
Big-O: Best, Average, and Worst Case

Best case Average case Worst case

Sequential
Search

O(1) — found right
away

O(n) — found on
average in the middle

O(n)

Binary Search O(1) — found right
away

O(log n) O(log n)

Hash table
search

O(1) — found right
away

O(1) — small
fixed-length buckets

O(n) — table
degenerated into one or
two buckets

Search in a
binary search
tree

O(1) — found right
away

O(log n) O(n) — tree degenerated
into nearly a list

Selection Sort O(n2) O(n2) O(n2)

Insertion Sort O(n) — array
already sorted

O(n2) O(n2)

Mergesort O(n log n), or O(n)
in a slightly
modified version
when the array is
sorted

O(n log n) O(n log n)

Quicksort O(n log n) O(n log n) O(n2) — pivot is
consistently chosen far
from the median value,
e.g., the array is already
sorted and the first
element is chosen as
pivot

Heapsort O(n log n) O(n log n) O(n log n)

Insert a value
into a heap

O(1) — the value is
the largest in the
heap

O(log n) O(log n)

Example:

The following method eliminates consecutive nodes with duplicate values from a linked
list. For example, A→B→B→B→C→A→A becomes A→B→C→A.

 public void skipDuplicates(ListNode head)
 {
 ListNode p = head;
 ListNode p2;

 while (p != null)
 {
 p2 = p.getNext();
 while (p2 != null && p2.getValue().equals(p.getValue()))
 {
 p2 = p2.getNext();
 }
 p.setNext(p2);
 p = p.getNext();
 }
 }

Which of the following best describes the best-case and worst-case running time for
skipDuplicates on a list with n nodes?

 Best case: Worst case:

(A) O(1) O(n)
(B) O(n) O(n)
(C) O(1) O(n2)
(D) O(n) O(n2)
(E) O(n2) O(n2)

Æ No matter what exactly the “best case” is, the method has to examine every node of
the list. The running time cannot possibly be constant; therefore, A and C are wrong
answers. There is a case when all the nodes are different. In that case the inner loop is
simply skipped, and we end up with a simple traversal of the list in one sequential loop.
The running time in that case is O(n), so E is not the right answer, either. We are left
with B and D. This example is an exception to the rule of thumb: it has nested loops, so
you might think the worst time might be O(n2). But this method eliminates consecutive
duplicate values, not all duplicate values. The trick is that the outer loop doesn’t
necessarily go to the next node, but can jump over all the removed nodes. Even when all
the nodes of the list are the same, each node is visited only once. We did warn you to use
the rules of thumb with caution, didn’t we? The answer is B. Ã

Source: Be Prepared for the AP Computer Science Exam in Java by Maria Litvin.
Copyright  2003 by Maria Litvin and Skylight Publishing.

