
11

Introduction to Computation and Problem
Solving

Prof. Steven R. Lerman
and

Dr. V. Judson Harward

Class 23: Introduction to Data
Structures: Stacks and Queues

Algorithms

An algorithm is a precise but not necessarily formal
description of how to solve a class of computational
problem. Examples: insertion sort, Newton's method,

A data structure is a general method of storing and accessing
data that optimizes or organizes one or more aspects of
data access, e.g., speed, ordering, etc. Examples, arrays,
Vector

A pattern is a strategy for solving a problem, specific enough
to be recognizable, but general enough so that the
programmer will customize it for each case. Examples: next
lecture!

2

1

Data Structures

•	 A good example is a queue. We encounter
queues all the time in every day life.

•	 What makes a queue a queue? What is the
essence of queueness?

3

4

Queues

A queue is a data structure to which you add
new items at one end and remove old
items from the other.

n+1 n n-2n-1 ... 234 1

Add items
here

Remove
items here

2

Queue Operations

Add an item:
1

Add another item:

2 1

Add a 3rd item:
head

tail

3 2 1

5

6

Queue Operations, 2

Remove an item:

Add another item:

Remove

3 2
head

tail

head

tail

3
head

tail
4

1

2

another item:

4 3 2

3

Queue Interface

public interface Queue
{

public boolean isEmpty();
public void add(Object o);
public Object remove() throws

NoSuchElementException;
public void clear();

}

7

Abstract vs Concrete Data Types

The “data structure” actually combines two
object-oriented concepts:

•	 the data structure interface, which defines
an abstract data type (ADT), and

•	 a particular implementation of that
interface that provides a concrete data
type (CDT).

8

4

Uses for Queues

•	 Queues are useful in many algorithms and in
situations where two systems pass information to
each other but will operate more efficiently
without handshaking on each information
transfer.

•	 Queues buffer the information transfer and allow
the queue source and destination to process the
information at independent rates.

• The Java® event queue is a good example.
• Derived types: priority queues, streams

9

The Right Data Structure for the Job

• Suppose you are writing a graphics editor.
•	 You want to implement an unlimited Undo

operation.
•	 You cleverly design a class that captures each

modification you make as an object.
• You want to use these objects to undo the mods.
• What data structure do we want? A queue?

10

5

Stacks

•	 Stacks resemble
queues except that
items are added and
removed from the same
end.

•	 Stacks are sometimes
referred to as LIFO
queues (last in first out)
as opposed to FIFO
queues (first in first out)
which describe the
base queue type.

push
on

pop
off

Add and
remove
items
here

11

n+1

n

.

.

.

2

1

12

Stack Operations

1

Push 1

2

Push 2

1

top

3

Push 3

2

top

1

2

Pop 3

1

top 3

4

Push 4

2

top

1

6

Uses of Stacks

•	 Stacks provide an orderly way to
postpone the performance of subsidiary
tasks encountered during program
execution.

•	 They are often associated with recursive
algorithms.

•	 Derived types: program stacks, parser
stacks

13

Stack Interface

public interface Stack
{

public boolean isEmpty();
public void push(Object o);
public Object pop() throws

EmptyStackException;
public void clear();

}

14

7

Using a Stack to Reverse an Array

public class Reverse {
public static void main(String args[]) {

int [] array = { 1, 2, 3, 4, 5 };
int i;
Stack stack = new ArrayStack();

for (i = 0; i < array.length; i++)
stack.push(new Integer(array[i]));

i = 0;
while (!stack.isEmpty()) {

array[i] =
((Integer) stack.pop()).intValue();

System.out.println(array[i++]);
}

}
}

15

Stack Implementation Based on an Array

In our array-based
implementation, the top of
the stack will move down
the array as we push items
onto it and will move back
up as we pop them.

The bottom of the stack will
always lie at element 0 of
the array.

In a sense, we are building
the stack "upside down" in
the array.

Array Index First item
on stack

Current top
of stack

Last
available
position

16

0

1

...

top

...

size-1

8

ArrayStack, 1

import java.util.*;
public class ArrayStack implements Stack {
static public final int DEFAULT_CAPACITY = 8;
private Object[] stack;
private int top = -1;
private int capacity;

public ArrayStack(int cap) {
capacity = cap;
stack = new Object[capacity];

}
public ArrayStack() {
this(DEFAULT_CAPACITY);

}

17

ArrayStack, 2

public boolean isEmpty() {
return (top < 0);

}

public void clear() {
for (int i = 0; i < top; i++)
stack[i] = null; // for garbage collection

top = -1;
}

18

9

ArrayStack, 3

public void push(Object o) {
if (++top == capacity)
grow();

stack[top] = o;
}

private void grow() {
capacity *= 2;
Object[] oldStack = stack;
stack = new Object[capacity];
System.arraycopy(oldStack, 0, stack, 0, top);

}

19

ArrayStack, 4

public Object pop()

throws EmptyStackException
{
if (isEmpty())
throw new EmptyStackException();

else {
// your code goes here
// remove and return item on top of the stack;
// adjust private variables; free memory
return null;

}
}

20

10

21

A Naïve Queue Implementation

front of
queue

rear of
queue

And after a remove?

0 1 ... lastIndex-1 lastIndex ... capacity-1

1 ... lastIndex-1 lastIndex lastIndex+1 ... capacity-1

A Ring Queue Implementation Based on Array

Two cases:
1. front < rear

0 ... front front+1 ... rear-1 rear ... size-1

occupied

2. rear < front, queue has wrapped round

0 ... rear-1 rear ... front front ... size-1

occupied occupied

22

11

23

Ring Structure of Array-Based Queue

front

front+1

. . .

rear -1rear

rear+1

. . .

start of
array

end of
array

front

front+1

. . .

rear -1 rear

rear+1
. . .

size-1

start of
array

end of
array

size-1 0 0
start of
queue

end of
queue

start of
queue

end of
queue

. . .

Implementing a Ring Queue

•	 Implementing a RingQueue is surprisingly difficult. The
trick is to use the concept of invariants.

•	 An invariant is a property of a class that is true whenever
one of the methods of the class is not executing. While a
class method is executing, the class can violate the
invariant for a moment, but it must restore it before exiting
the method.

public class RingQueue implements Queue {
private Object[] queue;
private int front;
private int rear;
private int capacity;
private int size = 0;

24

12

RingQueue Invariants

When not executing a static or instance method of
RingQueue all the following must hold:

queue: holds a reference to the ring array
size: Always >=0. Holds the # of items on the queue
front: if size>0, holds the index to the next item to be

removed from the queue
rear: if size>0, holds the index to the last item to be added to

the queue
capacity: Holds the size of the array referenced by queue

25

Sample RingQueue Methods

public boolean isEmpty() {
return (size == 0);

}

public Object remove() {
if (isEmpty())
throw new NoSuchElementException();

else {
Object ret = queue[front];
queue[front] = null; //for garbage collection
front = (front + 1) % capacity;
size--;
return ret;

}
}

26

13

Stack Exercise, 1

•	 You will write the pop() method for ArrayStack and
write the method in UndoViz that implements Undo.

• Download Lecture23.zip from the web site.
• Open it in Winzip and extract it to a new directory;

1.	 Click the extract button, which will open the extract
dialogue.

2.	 Use the browser on the right to navigate to where you
want to locate the new directory.

3. Click "New Folder" and name it.
4.	 Then click the extract button in the upper right corner

of the dialogue.
•	 Open a new project in Forte and mount the directory you

just created

27

Stack Exercise, 2

• Look over ArrayStack.java.

•	 The user interface is all contained in UndoViz.java. This
contains the main method to run the visualization. You
don't need to understand the code in most of the methods.
Just note how the undo button calls do_undo() when it is
pressed.

•	 Compile the project and execute UndoViz. (Right button
down and select execute). Confirm that the Undo button
does not work.

•	 Now complete the pop() method in ArrayStack and the
do_undo() method in UndoViz. You shouldn't have to
change any other methods.

• Recompile and check that Undo now works.

28

14

Stack Exercise, 3
public class UndoViz extends JPanel {
...
public UndoViz() {
...
undoButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent evt) {
do_undo();

}
});
...

}
...
public void do_undo() {
// Your code goes here.
// Undo the last graphic addition and redraw.

}

29

RingQueue Exercise

This exercise is more challenging. Don't worry if
you can't complete it. Solutions will be posted
on the web.

• You will write the add() method for RingQueue.
• Build the whole project. Execute RingQueueViz

and confirm that the add button doesn't work.
Now write the RingQueue add() method. Make
sure that by the time you exit the methods all
invariants still hold. What will you do if size ==
capacity before you add an element?

• Compile and test by running RingQueueViz.

30

15

abgupt
Java® is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.

