

AP® Computer Science AB
2007 Free-Response Questions

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and
teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement
Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied
in all of its programs, services, activities, and concerns.

© 2007 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, SAT, and the
acorn logo are registered trademarks of the College Board. PSAT/NMSQT is a registered trademark of the College Board and
National Merit Scholarship Corporation.
Permission to use copyrighted College Board materials may be requested online at:
www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-2-

COMPUTER SCIENCE AB
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE
TO BE WRITTEN IN JAVA.

Notes:
• Assume that the classes listed in the Quick Reference found in the Appendix have been imported

where appropriate.

• The java.util.Stack and java.util.PriorityQueue classes and the
java.util.Queue interface (page A2 in the Appendix) each inherit methods that access
elements in a way that violates their abstract data structure definitions. Solutions that use
objects of types Stack, Queue, and PriorityQueue should use only the methods
listed in the Appendix for accessing and modifying those objects. The use of other methods
may not receive full credit.

• Assume that the implementation classes ListNode and TreeNode (page A4 in the Appendix)
are used for any questions referring to linked lists or trees, unless otherwise specified.

• ListNode and TreeNode parameters may be null. Otherwise, unless noted in the question,
assume that parameters in method calls are not null and that methods are called only when their
preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed
in classes defined in that question. Writing significant amounts of code that can be replaced by a call
to one of these methods may not receive full credit.

• When Big-Oh running time is required for a response, you must use the most restrictive Big-Oh expression.

For example, if the running time is ()O n , a response of 2()O n will not be given credit.

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-3-

 1. The sliding puzzle is a popular puzzle toy and can be represented as a square grid in which all but one location
contains a numbered tile. For example, the following diagram shows a 4 4� puzzle containing tiles numbered
1 through 15 and a single "hole."

1 4 3 12

11 5 7

13 14 6 2

10 8 15 9

 The puzzle is solved by sliding tiles until all numbers are arranged in numerical sequence when traversed in row-

major order, as shown in the following diagram. Note that the hole may be in any position.

1 2 3 4

5 6 7

8 9 10 11

12 13 14 15

 The puzzle is represented by the SlidingPuzzle class shown below. In this question, you will implement

two methods of this class.

public class SlidingPuzzle
{
 private int side; // the side length of the puzzle grid
 private int[][] values; // the tile values with the hole represented by 0

 /** @param sideLength the side length of the square grid
 * Precondition: sideLength > 0
 */
 public SlidingPuzzle(int sideLength)
 {
 side = sideLength;
 values = new int[side][side];
 initialize();
 }

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-4-

 /** Precondition: the puzzle grid contains the distinct values 0 through 2 1-side
 * @return true if the tiles in the puzzle are all arranged in increasing order
 * (the hole value 0 may be in any position);
 * false otherwise
 */
 public boolean isDone()
 { /* to be implemented in part (a) */ }

 /** Initializes the puzzle by placing numbers 0 through 2 1-side into random locations
 */
 public void initialize()
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

(a) Write the SlidingPuzzle method isDone. Method isDone returns true if the values in the
puzzle appear in increasing order when traversed in row-major order; otherwise, it returns false. The
value 0 (denoting the hole) may appear anywhere within the puzzle.

 Complete method isDone below.

 /** Precondition: the puzzle grid contains the distinct values 0 through 2 1-side
 * @return true if the tiles in the puzzle are all arranged in increasing order
 * (the hole value 0 may be in any position);
 * false otherwise
 */
 public boolean isDone()

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-5-

(b) Write the SlidingPuzzle method initialize. Method initialize fills the ¥side side

values grid with random integers 0 through 2 1-side , without repeating numbers.

 Your implementation must use the following algorithm.

1. Initialize an ArrayList<Integer> named temp with values 0 through 2 1n = -side .
The code for this step is provided.

Starting with the first element of the grid values, repeat steps 2 and 3 until the grid has been filled.

2. Pick a random element from temp and place that element into the next empty grid location.

3. Remove that element from temp by calling the ArrayList remove method on its index.

 Complete method initialize below. The method has been started for your convenience.

 /** Initializes the puzzle by placing numbers 0 through 2 1-side into random locations
 */
 public void initialize()
 {
 ArrayList<Integer> temp = new ArrayList<Integer>();
 for (int j = 0; j < side * side; j++)
 temp.add(new Integer(j));

 // Write your solution below.

 }

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-6-

(c) What is the expected big-Oh running time of the initialization algorithm described in part (b), in terms of n,
the number of tiles?

(d) Consider a variation of the algorithm described in part (b) in which Step 3 is changed.

1. Initialize an ArrayList<Integer> named temp with values 0 through 2 1n = -side .

Starting with the first element of the grid values, repeat steps 2 and 3 until the grid has been filled.

2. Pick a random element from temp and place that element into the next empty grid location.

3. Replace that element with the element in the last index of temp, then remove the last element
from temp. (Note: removing the last item of an ArrayList is a constant time operation.)

 What is the expected big-Oh running time of this variation in terms of n, the number of tiles?

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-7-

 2. Consider a system for choosing pairs of people to be lab partners based on a compatibility score. A Person
class (whose implementation is not shown) is used by the Pair class and the PairMatcher class. The
Person class implements appropriate hashCode and equals methods.

 The declaration for the Pair class is shown below. A Pair object is constructed with two Person

objects and has a method that calculates and compares the compatibility scores of two Pair objects.

public class Pair implements Comparable
{
 /** @param p1 the first Person of the Pair
 * @param p2 the second Person of the Pair
 */
 public Pair(Person p1, Person p2)
 { /* implementation not shown */ }

 /** @return first Person of this Pair
 */
 public Person getPerson1()
 { /* implementation not shown */ }

 /** @return second Person of this Pair
 */
 public Person getPerson2()
 { /* implementation not shown */ }

 /** @param other the object to be compared to this Pair
 * Precondition: other is a Pair object
 * @return the result of the comparison of the compatibility scores of this Pair and other
 */
 public int compareTo(Object other)
 { /* implementation not shown */ }

 // There may be fields, constructors, and methods that are not shown.
}

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-8-

 The PairMatcher class declared below will be used to maintain compatibility information about a group of
people. A PairMatcher object is constructed with a list of Person objects. The constructor creates a
mapping between each Person in the list and a priority queue of pairings between that Person and every
other Person in the list.

public class PairMatcher
{
 private Map<Person, PriorityQueue<Pair>> personMap;

 /** Initializes and fills personMap so that each Person in personList is a key,
 * and the value associated with each key k is a PriorityQueue of Pair objects
 * pairing k with all other Persons in personList
 * @param personList a nonempty list of Person objects
 */
 public PairMatcher(List<Person> personList)
 { /* to be implemented in part (a) */ }

 /** @param p the Person to be matched
 * @param num the number of Person objects to remove
 * Precondition: if p is in personMap, then num is > 0 and less than or equal to
 * the number of pairs in the priority queue associated with p
 * @return an array of the num removed Person objects;
 * null if p is not in personMap
 */
 public Person[] removeNumMatches(Person p, int num)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-9-

(a) Write the PairMatcher constructor. The constructor builds personMap such that each Person
object in personList is a key in the Map. The value associated with each key k is a
PriorityQueue of Pair objects such that for all p in personList, if p is not equal to k,
there is a Pair in which k is the first Person and p is the second Person.

 For example, the following shows a list of Person objects and the map that would be created as a result
of constructing a PairMatcher object with that list. The Pair objects in the map show the first
Person, the second Person, and the compatibility score (lower scores mean better compatibility).

personList Jamie Chris Pat Terry

personMap

Jamie

:

Jamie
Pat
(10)

Jamie
Chris
(11)

Jamie
Terry
(22)

Chris

:

Chris
Jamie
(11)

Chris
Terry
(11)

Chris
Pat
(21)

Pat

:

Pat
Jamie
(10)

Pat
Chris
(21)

Pat
Terry
(32)

Terry

:

Terry
Chris
(11)

Terry
Jamie
(22)

Terry
Pat
(32)

 Complete the PairMatcher constructor below.

 /** Initializes and fills personMap so that each Person in personList is a key,
 * and the value associated with each key k is a PriorityQueue of Pair objects
 * pairing k with all other Persons in personList
 * @param personList a nonempty list of Person objects
 */
 public PairMatcher(List<Person> personList)

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-10-

(b) Write the PairMatcher method removeNumMatches. Method removeNumMatches removes
the first num Pair objects from the priority queue associated with p in personMap and returns an
array containing the second Person of each Pair that was removed. The Person objects in the
returned array should be ordered by their compatibility with Person p. If Person p is not in the
map, null is returned.

 Complete method removeNumMatches below.

 /** @param p the Person to be matched
 * @param num the number of Person objects to remove
 * Precondition: if p is in personMap, then num is > 0 and less than or equal to
 * the number of pairs in the priority queue associated with p
 * @return an array of the num removed Person objects;
 * null if p is not in personMap
 */
 public Person[] removeNumMatches(Person p, int num)

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-11-

 3. A game called TreeBall has been created in which a player drops a ball into the top of the game board. The score
is computed by summing the values in the nodes along the path that the ball follows.

 The game board for TreeBall is a full binary tree in which the root represents the top of the game board. For
this question, assume that a full binary tree is one in which all leaves are at the same level and all non-leaf nodes
have exactly two children. Each node in the tree contains an integer from 0 to 9. The diagram below shows an
example TreeBall game board with 4 levels. In this example, the path with the greatest total is shown by the
shaded nodes from the root (8) to the leaf (9). The score for this path is 25 = 8 + 7 + 1 + 9.

 The declaration for the GameBoard class is shown below.

public class GameBoard
{
 private TreeNode root; // the root of the tree

 /** Creates a full binary tree rooted at root with numLevels levels
 * with a random integer from 0 to 9, inclusive, generated for each node
 * @param numLevels the number of levels in the tree
 * Precondition: numLevels 0>
 */
 public GameBoard(int numLevels)
 { /* to be implemented in part (b) */ }

 /** @return the maximum path score for this GameBoard
 */
 public int getMaxScore()
 { return getMaxHelper(root); }

 /** @param current the root of the subtree to be processed
 * @return the maximum path score for the subtree rooted at current
 */
 private int getMaxHelper(TreeNode current)
 { /* to be implemented in part (a) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-12-

(a) Write the GameBoard method getMaxHelper, which returns the maximum path score that can be
obtained from the tree rooted at current. A path score is computed by summing the node values along
the path from current to a leaf node. The maximum path score for an empty tree is 0.

 Complete method getMaxHelper below.

 /** @param current the root of the subtree to be processed
 * @return the maximum path score for the subtree rooted at current
 */
 private int getMaxHelper(TreeNode current)

(b) Write the GameBoard constructor, which creates a full binary tree with numLevels levels. Each node
in the tree should contain an independently generated random Integer value from 0 to 9, inclusive.
Recall that for this question a full binary tree has the property that all leaves are on the same level. You may
find it useful to write and use a helper method to create the tree.

 Complete the GameBoard constructor below.

 /** Creates a full binary tree rooted at root with numLevels levels
 * with a random integer from 0 to 9, inclusive, generated for each node
 * @param numLevels the number of levels in the tree
 * Precondition: numLevels 0>
 */
 public GameBoard(int numLevels)

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-13-

 4. This question involves reasoning about the code from the Marine Biology Simulation case study. A copy of the
code is provided as part of this exam.

 Suppose that you want to visit all locations of a square environment in a single loop. There is a familiar interface

for this purpose: the iterator. In this question, you will complete a method in a class EnvIterator that
implements the Iterator interface.

 Here is an incomplete definition of the EnvIterator class.

public class EnvIterator implements Iterator<Location>
{
 private Environment env; // the environment over which to iterate
 private Location loc; // the next location to be returned

 /** @param anEnv the environment over which to iterate
 * Precondition: anEnv is square, i.e., anEnv.numRows() == anEnv.numCols()
 */
 public EnvIterator(BoundedEnv anEnv)
 {
 env = anEnv;
 loc = new Location(0, 0);
 }

 /** @return true if this EnvIterator has more elements
 * false otherwise
 */
 public boolean hasNext()
 { return env.isValid(loc); }

 /** Precondition: hasNext() returns true
 * Postcondition: loc has been updated to the successor location
 * @return the next location in the environment
 */
 public Location next()
 { /* to be implemented in part (a) */ }

 /** Throws an UnsupportedOperationException since it is impossible to
 * remove a location from an environment.
 */
 public void remove()
 { throw new UnsupportedOperationException(); }
}

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-14-

(a) Write the EnvIterator method next. The next method should return the next location in the
environment, that is, the location that is referenced in the loc instance field when the method is called.
The next method should also update the loc instance field to the successor location, as described
below. Note that the first location returned by next is (0, 0) as initialized in the EnvIterator
constructor.

 Your implementation of next should allow the iterator to visit all elements of a square BoundedEnv,
following the diagonal pattern shown in the diagram below.

 The following describes the algorithm for determining the successor location in the diagonal pattern shown

in the diagram above.

1. If the current location is at the bottom edge of the environment, move to the top of the next diagonal. For
example, in the diagram given above, (4, 1) is followed by (2, 4).

2. Otherwise, if the current location is at the left edge of the environment, move to the top of the next
diagonal. For example, in the diagram given above, (1, 0) is followed by (0, 2).

3. Otherwise, move down and left. For example, in the diagram given above, (1, 1) is followed by (2, 0).

 Complete method next below.

 /** Precondition: hasNext() returns true
 * Postcondition: loc has been updated to the successor location
 * @return the next location in the environment
 */
 public Location next()

2007 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

-15-

(b) A client class contains the method emptyLocs, which returns a list of the first n empty locations when
a given square environment env is traversed by an EnvIterator. If there are fewer than n empty
locations in env, emptyLocs should return all of them.

 For example, suppose the environment env is as shown in the diagram below where x indicates

an occupied location. In this example, the call emptyLocs(env, 5) returns a list of locations
[(0, 1), (1, 0), (2, 0), (0, 3), (1, 2)].

 0 1 2 3

0 x x

1 x x

2 x

3 x

 Complete method emptyLocs below.

 /** @param env the environment over which to iterate
 * Precondition: env is square, i.e., env.numRows() == env.numCols()
 * @param n the desired number of empty locations to be returned
 * Precondition: n 0>
 * @return a list of the first n empty locations;
 * all empty locations if there are fewer than n empty locations.
 * Locations are ordered in the order in which they are visited by the EnvIterator
 */
 public List<Location> emptyLocs(BoundedEnv env, int n)

STOP

END OF EXAM

