

AP® Computer Science AB
2002 Free-Response Questions

These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement
Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their

programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity.
Founded in 1900, the association is composed of more than 4,200 schools, colleges, universities, and other educational organizations. Each year, the
College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in

college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the
PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and

excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2002 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the acorn logo
are registered trademarks of the College Entrance Examination Board. APIEL is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a

registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation.
Educational Testing Service and ETS are registered trademarks of Educational Testing Service.

The materials included in these files are intended for use by AP teachers for course
and exam preparation in the classroom; permission for any other use must be

sought from the Advanced Placement Program®. Teachers may reproduce them, in
whole or in part, in limited quantities, for face-to-face teaching purposes but may
not mass distribute the materials, electronically or otherwise. These materials and

any copies made of them may not be resold, and the copyright notices must be
retained as they appear here. This permission does not apply to any third-party

copyrights contained herein.

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 2

COMPUTER SCIENCE AB

SECTION II
Time—1 hour and 45 minutes

Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN C++.

Note: Assume that the standard libraries (e.g., iostream.h, fstream.h, math.h, etc.) and the AP C++
classes are included in any program that uses a program segment you write. If other classes are to be included, that
information will be specified in individual questions. Unless otherwise noted, assume that all functions are called
only when their preconditions are satisfied. A Quick Reference to the AP C++ classes is included in the case study
insert.

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 3

 1. Consider the problem of assigning passengers to seats on airline flights. Three types of information are needed
—passenger information, seat information, and flight information. Three classes will be used to represent this
information, respectively: Passenger, Seat, and Flight.

 You will write three member functions for the Flight class:
(a) EmptySeatCount that returns the number of empty seats of a specified type,

(b) FindBlock that returns information about the location of an empty block of seats, and

(c) AssignGroup that attempts to assign a group of passengers to adjacent seats.

 Passenger information is abstracted by a class and includes a name and other information. A default passenger,

used to indicate “no passenger” in a seat, has the empty string "" as its name. The declaration for class
Passenger is as follows.

class Passenger
{
 public:
 Passenger(); // default passenger with name ""

 apstring GetName() const;
 // postcondition: returns passenger’s name

 // ... other public and private members not shown
};

 Seat information includes the passenger assigned to the seat and the type of the seat (“window”, “aisle”,

“middle”). The Seat function GetPassenger returns the passenger assigned to the seat; if the seat is
empty, GetPassenger returns a default passenger. The declaration for the class Seat is as follows.

class Seat
{
 public:
 Passenger GetPassenger() const;
 // postcondition: returns passenger in this seat

 apstring GetType() const;
 // postcondition: returns the type of this seat

 void SetPassenger(const Passenger & p);
 // postcondition: assigns p to this seat (i.e., GetPassenger() == p)

 // ... constructors and other public and private members not shown
};

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 4

 Seat assignments are processed by the public member functions of the class Flight. The seating arrangement
is represented internally by a matrix of seats in the class Flight. The declaration for the class Flight is as
follows.

class Flight
{
 public:
 int EmptySeatCount(const apstring & seatType) const;
 // postcondition: returns the number of empty seats
 // whose type is seatType;
 // if seatType is "any", returns the
 // total number of empty seats

 int FindBlock(int row, int seatsNeeded) const;
 // postcondition: returns column index of the first (lowest index)
 // seat in a block of seatsNeeded adjacent
 // empty seats in the specified row;
 // if no such block exists, returns -1

 bool AssignGroup(const apvector<Passenger> & group);
 // postcondition: if possible, assigns the group.length() passengers
 // from group to adjacent empty seats in a single row
 // and returns true;
 // otherwise, makes no changes and returns false

 // ... constructors and other public member functions not shown

 private:
 apmatrix<Seat> mySeats;

 // ... other private data members not shown
};

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 5

(a) You will write the Flight member function EmptySeatCount, which is described as follows.
EmptySeatCount returns the number of empty seats of the specified type seatType. Recall that an
empty seat holds a default passenger whose name is "". If seatType is "any", then every empty
seat should be counted in determining the number of empty seats. Otherwise, only seats whose type is the
same as seatType are counted in determining the number of empty seats.

 For example, consider the diagram of passengers assigned to seats as stored in mySeats for
Flight ap2002 as shown below.

 [0] [1] [2] [3] [4] [5]
 window middle aisle aisle middle window

[0] “Kelly”

“Robin” “”

“Sandy”

“”

“Fran”

 window middle aisle aisle middle window
[1] “Chris”

“Alex” “”

“”

“Pat”

“Sam”

 The following table shows several examples of calling EmptySeatCount for this flight.

Function Call Value Returned

ap2002.EmptySeatCount("aisle") 3

ap2002.EmptySeatCount("window") 0

ap2002.EmptySeatCount("middle") 1

ap2002.EmptySeatCount("any") 4

 Complete function EmptySeatCount below.

int Flight::EmptySeatCount(const apstring & seatType) const
// postcondition: returns the number of empty seats
// whose type is seatType;
// if seatType is "any", returns the
// total number of empty seats

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 6

(b) You will write the Flight member function FindBlock, which is described as follows.
FindBlock searches for a block of seatsNeeded adjacent empty seats in the specified row. If such a
block of seats is found, FindBlock returns the column index of the first (i.e., the lowest index) seat in
the block; otherwise, it returns -1.

 The seating diagram for passengers of Flight ap2002 is repeated here for your convenience.

 [0] [1] [2] [3] [4] [5]
 window middle aisle aisle middle window

[0] “Kelly”

“Robin” “”

“Sandy”

“”

“Fran”

 window middle aisle aisle middle window
[1] “Chris”

“Alex” “”

“”

“Pat”

“Sam”

 The following table shows several examples of calling FindBlock for Flight ap2002 as shown.

Function Call Value Returned

ap2002.FindBlock(0, 1) 2 or 4

ap2002.FindBlock(0, 2) -1

ap2002.FindBlock(1, 2) 2

 Complete function FindBlock below.

int Flight::FindBlock(int row, int seatsNeeded) const
// postcondition: returns column index of the first (lowest index)
// seat in a block of seatsNeeded adjacent
// empty seats in the specified row;
// if no such block exists, returns -1

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 7

(c) You will write the Flight member function AssignGroup, which is described as follows. The
parameter to the Flight member function AssignGroup is an array of passengers, group. These
passengers require a block of adjacent seats in a single row. AssignGroup searches for
group.length() adjacent empty seats in some row. If such a block of seats is found, the passengers in
group will be assigned to those seats, and AssignGroup returns true. Otherwise, no passengers
are assigned to seats, and AssignGroup returns false.

 For example, the seats in Flight ap314 are as shown in the first diagram below. If the array adults
contains three passengers, the call ap314.AssignGroup(adults) makes no changes to ap314
and returns false, because there is no block of three adjacent empty seats in a single row. On the other
hand, suppose the array kids contains passengers "Sam" and "Alex". The call
ap314.AssignGroup(kids) will assign "Sam" and "Alex" to the seats shown in the second
diagram below and return true.

 Contents of mySeats for ap314 before any call to AssignGroup

 [0] [1] [2] [3] [4]
 window aisle aisle middle window

[0] “Kelly”

“”

“Sandy”

“”

“Fran”

 window aisle aisle middle window
[1] “Chris”

“”

“”

“Pat”

“”

 Contents of mySeats for ap314 after call to ap314.AssignGroup(kids)

 [0] [1] [2] [3] [4]
 window aisle aisle middle window

[0] “Kelly”

“”

“Sandy”

“”

“Fran”

 window aisle aisle middle window
[1] “Chris”

“Sam”

“Alex”

“Pat”

“”

 In writing AssignGroup, you may call FindBlock specified in part (b). Assume that FindBlock
works as specified, regardless of what you wrote in part (b).

 Complete function AssignGroup below.

bool Flight::AssignGroup(const apvector<Passenger> & group)
// postcondition: if possible, assigns the group.length() passengers
// from group to adjacent empty seats in a single row
// and returns true;
// otherwise, makes no changes and returns false

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 8

 2. Consider the following class declaration for representing cards to be used in a program that simulates a card
game.

class Card
{
 public:

 int Value() const;
 // postcondition: returns the value of this card

 // ... constructors and other public member functions not shown

 private:
 // ... private data members not shown
};

 The card game to be simulated is a two-player game called “Compete” that is played with a set of cards, each

having a numeric value. The object of the game is to win all of the cards.

 Each player has a pile of cards and both piles start with the same number of cards. Play consists of a sequence of

“rounds”. Play continues until at the end of a round at least one player is out of cards. A discard pile is created
and used during the rounds and is empty at the beginning of each round.

 You will write code to move cards from one pile to another and to play one round. Each pile of cards will be

represented by a queue.

 A round is played by executing the following steps until the round ends.
 1. If exactly one player’s pile is empty, the other player adds all the cards in the discard pile to the bottom

of his or her pile without changing the order. The round ends.
 2. If both players’ piles are empty at the same time, both players’ piles remain empty. The round ends.
 3. Each player turns over the top card from his/her pile.
 4. If the cards match in value, both cards are added to the discard pile in either order and play returns to step 1.
 5. If the cards do not match in value, the player whose card has the greater value adds any cards in the discard

pile to the bottom of his/her pile without changing the order of the cards in the discard pile. He/she then adds
both cards just played to the bottom of his/her pile in either order. The round ends.

(a) You will write free function AppendQueue, which is described as follows. AppendQueue should

remove all the cards from the parameter source and add them to the parameter destination in the
same order.

 Complete function AppendQueue below.

void AppendQueue(apqueue<Card> & destination,
 apqueue<Card> & source)
// postcondition: all cards have been removed from source
// and added to destination in the same order

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 9

(b) You will write free function OneRound. OneRound takes the two players’ piles of cards as parameters
and carries out one round of the game. For your convenience the steps for one round are repeated here.

 1. If exactly one player’s pile is empty, the other player adds all the cards in the discard pile to the bottom
of his or her pile without changing the order. The round ends.

 2. If both players’ piles are empty at the same time, both players’ piles remain empty. The round ends.
 3. Each player turns over the top card from his/her pile.
 4. If the cards match in value, both cards are added to the discard pile in either order and play returns

to step 1.
 5. If the cards do not match in value, the player whose card has the greater value adds any cards in the

discard pile to the bottom of his/her pile without changing the order of the cards in the discard pile.
He/she then adds both cards just played to the bottom of his/her pile in either order. The round ends.

 In writing OneRound, you may call Card::Value() and AppendQueue from part (a). Assume

that AppendQueue works as specified, regardless of what you wrote in part (a).

 Complete function OneRound below.

void OneRound(apqueue<Card> & pile1,
 apqueue<Card> & pile2)
// precondition: pile1.length() > 0; pile2.length() > 0
// postcondition: pile1 and pile2 have been updated according to the
// rules of the game

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 10

 3. This question involves reasoning about the code from the Marine Biology Case Study. A copy of the code is
provided as part of this exam.

 The original version of the case study uses a two-dimensional matrix, myWorld, to represent the world in
which the simulation takes place. Consider an alternate representation where the fish in each row are stored
in a singly linked list. The implementation of myWorld becomes an array in which each element contains
a pointer to the first node in the linked list for that row. If there are no fish in that row, the pointer is NULL.
Each list node contains a fish, the column index for that fish, and a pointer to the node containing the next
fish in that row. The linked list is ordered by column index, from smallest to largest.

 In the example below, myWorld[0] is a pointer to the first node of a list containing two fish: fish D at
column 1 and fish A at column 2. The element myWorld[3] is NULL, indicating that there are no fish
in that row.

 The list of fish will be implemented using the following declaration.

struct ListNode
{
 Fish theFish;
 int columnIndex;
 ListNode * next;

 ListNode();
 // sets theFish to emptyFish, columnIndex to -1, next to NULL

 ListNode(const Fish f, int c, ListNode * link);
 // sets theFish to f, columnIndex to c, next to link
};

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 11

 Consider the following changes (shown in bold) to the private section of the Environment class.

 private:

 bool InRange(const Position & pos) const;
 // postcondition: returns true if pos in grid,
 // returns false otherwise

 apvector<ListNode *> myWorld; // grid of fish

 int myNumCols;
 // from file input when environment constructed

 int myFishCreated; // # fish ever created
 int myFishCount; // # fish in current environment

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 12

(a) Modify the Environment member function AllFish to use the revised data structure. In writing
AllFish, you may use any other Environment member functions or the public member functions
of any other class used in this case study. Assume that all member functions work as specified.

 Complete function AllFish below. Note the changes shown in bold.

apvector<Fish> Environment::AllFish() const
// postcondition: returned vector (call it fishList) contains all
// fish in top-down, left-right order:
// top-left fish in fishList[0],
// bottom-right fish in fishList[fishList.length()-1];
// # fish in environment is fishList.length()
{
 apvector<Fish> fishList(myFishCount);
 int r, k; // c from original not needed
 int count = 0;
 apstring s = "";
 ListNode * tempPtr;

 // look at all grid positions, store fish found in vector fishList

 // insert code here

 // end of inserted code

 for (k = 0; k < count; k++)
 {
 s += fishList[k].Location().ToString() + " ";
 }
 DebugPrint(5, "Fish vector = " + s);
 return fishList;
}

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 13

(b) Modify the Environment member function AddFish to use the revised data structure. The new fish
should be inserted into the correct row’s linked list, maintaining the order of the list sorted by column index.

 In writing AddFish, you may use any other Environment member functions or the public member
functions of any other class used in this case study. Assume that all member functions work as specified.

 Complete function AddFish below.

void Environment::AddFish(const Position & pos)
// precondition: no fish already at pos, i.e., IsEmpty(pos)
// postcondition: fish created at pos
{
 if (! IsEmpty(pos))
 {
 cerr << "error, attempt to create a fish at non-empty: "
 << pos << endl;
 }

 // insert code here

}

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 14

 4. Consider the problem of encoding words as a string of 0’s and 1’s using a codetree. A codetree is a binary tree
containing letters in its leaves. The encoding of a letter is represented by the root-to-leaf path for the letter. The
same codetree is used for encoding and decoding.

 The following properties hold for every codetree.

 (i) Every node is either a leaf or has exactly 2 children.

 (ii) Letters appear only at the leaves of the codetree.

 (iii) There are at least 2 letters in the codetree.

 (iv) Each letter appears at most once in the codetree; thus there is a unique root-to-leaf path encoding
for each letter.

 For example, consider the following codetree, C.

 The code for each letter is a string formed by appending a ’0’ when taking a left branch and a ’1’ for a
right branch when traversing the root-to-leaf path. In the codetree above, the code for ’u’ is "010" (left,
right, left), the code for ’s’ is "00", and the code for ’n’ is "10". A word is encoded by appending
the codes for letters in the word together. For example, the code for "sun" is "0001010", which is formed
by appending the codes for ’s’, ’u’, and ’n’.

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 15

 Consider the following declarations for a tree node and a class that represents the codetree.

struct Node
{
 char letter; // value ignored except in leaves
 Node * left; // link to left child
 Node * right; // link to right child
};

class CodeTree
{
 public:

 apstring BitsToWord(const apstring & code) const;
 // precondition: code is a string of 0’s and 1’s representing
 // a valid encoded word
 // postcondition: returns decoded word for code

 apstring WordToBits(const apstring & word) const;
 // precondition: each character in word is in a leaf
 // of the codetree
 // postcondition: returns the code for word

 // ... constructor and other public member functions not shown

 private:

 apstring CharToBitsHelper(char ch, Node * T,
 const apstring & pathSoFar) const;
 // postcondition: if ch is in subtree T, returns code for ch

 Node * myRoot;

 // ... other private data members and functions not shown
};

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE. 16

(a) You will write the CodeTree member function BitsToWord, which is described as follows.
BitsToWord is given a coded word (a string of 0’s and 1’s) and returns the decoded word.

 Each character of code represents a branch in the codetree, where ’0’ represents a left branch and
’1’ represents a right branch. To decode the word represented by code, begin at the root and follow a
branch for each ’0’ or ’1’ character in code. When a leaf is reached, one letter in the decoded word
has been found. The decoding process begins again at the root of the codetree with the next ’0’ or ’1’
character in code.

 For example, using the CodeTree C as shown, if code is "1110", the call
C.BitsToWord(code) returns the word "in". This result is obtained as follows. The path starts at
the root and goes right for the first ’1’, right again for the second ’1’, and a leaf is reached, meaning
the decoded word begins with ’i’. Starting back at the root of the codetree and with the next ’1’ in
code, the path goes right for ’1’ and left for ’0’, reaching the leaf with the letter ’n’. The decoded
word is now "in", and since all characters in code have been processed, "in" is returned. Similarly,
C.BitsToWord("000101010011") returns the word "sunny".

 Complete function BitsToWord below.

apstring CodeTree::BitsToWord(const apstring & code) const
// precondition: code is a string of 0’s and 1’s representing
// a valid encoded word
// postcondition: returns decoded word for code

2002 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

 17

(b) The implementation of WordToBits given below forms the code for word by appending the result
of calling the private member function CharToBitsHelper once for each character in the parameter
word.

apstring CodeTree::WordToBits(const apstring & word) const
// precondition: each character in word is in a leaf of the codetree
// postcondition: returns the code for word
{
 apstring bits;
 for (int k = 0; k < word.length(); k++)
 {
 bits += CharToBitsHelper(word[k], myRoot, "");
 }
 return bits;
}

 You will write the CodeTree private member function CharToBitsHelper.

 CharToBitsHelper has a third parameter, pathSoFar, that can be used to keep track of the current
path from myRoot to T, should you choose to do so. For this reason, the value of pathSoFar in the
call from WordToBits is "".

 Using CodeTree C as shown, CharToBitsHelper(’y’, myRoot, "") would return the
string "011" and CharToBitsHelper(’n’, myRoot, "") would return "10".

 Complete function CharToBitsHelper below.

apstring CodeTree::CharToBitsHelper(char ch, Node * T,
 const apstring & pathSoFar) const
 // postcondition: if ch is in subtree T, returns code for ch

END OF EXAMINATION

