

AP® Computer Science AB
2003 Free-Response Questions

These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement
Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their

programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity.
Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the

College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in
college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the

PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and
excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams,
APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board.

AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the
College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of

Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

The materials included in these files are intended for use by AP teachers

for course and exam preparation; permission for any other use must be

sought from the Advanced Placement Program®. Teachers may reproduce them, in

whole or in part, in limited quantities for noncommercial, face-to-face teaching

purposes. This permission does not apply to any third-party copyrights contained

herein. This material may not be mass distributed, electronically or otherwise.

These materials and any copies made of them may not be resold, and the

copyright notices must be retained as they appear here.

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
2

COMPUTER SCIENCE AB

SECTION II
Time—1 hour and 45 minutes

Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN C++.

Note: Assume that the standard libraries (e.g., iostream.h, fstream.h, math.h, etc.) and the AP C++
classes are included in any program that uses a program segment you write. If other classes are to be included, that
information will be specified in individual questions. Unless otherwise noted, assume that all functions are called
only when their preconditions are satisfied. A Quick Reference to the AP C++ classes is included in the case study
insert.

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
3

 1. Periodically, a company processes the retirement of some of its employees. In this question, you will write
functions to help the company determine whether an employee is eligible to retire and to process the retirement
of employees who wish to retire. You will also analyze the runtime performance of one of the functions that
you write.

 The Employee class is declared as follows.

class Employee
{
 public:
 int Age() const;
 // returns the age (in years) of this employee

 int YearsOnJob() const;
 // returns the number of years this employee has worked

 double Salary() const;
 // returns the salary of this employee in dollars

 int ID() const;
 // returns unique employee ID number

 // ... constructors, other member functions and data not shown
};

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
4

 The Company class is declared as follows.

class Company
{
 public:
 void ProcessRetirements(const apvector<Employee> & claimants);
 // precondition: claimants is sorted in ascending order
 // by employee ID with no duplicates;
 // all claimants are in empList
 // postcondition: all eligible employees in claimants have been
 // removed from empList; empList has been resized to
 // reflect retirements;
 // empList remains sorted by employee ID;

 // salaryBudget has been updated to reflect remaining
 // employees

 private:
 bool EmployeeIsEligible(const Employee & emp) const;
 // postcondition: returns true if emp is eligible to retire;
 // otherwise, returns false

 apvector<Employee> empList;
 // stores the employees sorted by employee ID in ascending order
 // empList.length() is the number of employees

 int retireAge; // minimum age to retire
 int retireYears; // minimum years on job to retire
 double retireSalary; // minimum salary to retire

 double salaryBudget; // total salary of all employees

};

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
5

 The data member empList is sorted in ascending order by employee ID. The total of all salaries is
maintained in the data member salaryBudget.

(a) An employee is eligible for retirement if (s)he meets at least two of the following requirements:

 1. The employee is at least retireAge years old.

 2. The employee has worked for at least retireYears.

 3. The employee’s salary is at least retireSalary.

 Write the Company member function EmployeeIsEligible, which is described as follows.
EmployeeIsEligible returns true if Employee emp is eligible for retirement, using the rules
described above.

 Complete function EmployeeIsEligible below.

bool Company::EmployeeIsEligible(const Employee & emp) const
// postcondition: returns true if emp is eligible to retire;
// otherwise, returns false

(b) Write the Company member function ProcessRetirements, which is described as follows. The
function takes as its only parameter an array, claimants, representing all employees that wish to retire.
Assume that claimants is sorted in ascending order by ID number, contains no duplicates, and that all
elements in claimants are also in empList. ProcessRetirements removes from empList
only those employees listed in claimants that are eligible for retirement, resizes (shrinks) empList
as appropriate, and decreases salaryBudget accordingly.

 In writing ProcessRetirements, you may call EmployeeIsEligible, specified in part (a).
Assume that EmployeeIsEligible works as specified, regardless of what you wrote in part (a).

 Complete function ProcessRetirements below.

void Company::ProcessRetirements(const apvector<Employee> & claimants)
// precondition: claimants is sorted in ascending order
// by employee ID with no duplicates;
// all claimants are in empList
// postcondition: all eligible employees in claimants have been
// removed from empList; empList has been resized to
// reflect retirements;
// empList remains sorted by employee ID;
// salaryBudget has been updated to reflect remaining
// employees

(c) Assume that N is the number of employees in the company. Give the best Big-Oh expression (in terms
of N) for the worst-case running time for your implementation of the function ProcessRetirements.
Justify your answer with reference to the code you wrote in part (b). You will NOT receive full credit if
you do not provide a justification.

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
6

 2. Consider the problem of representing a filing system for student records that are stored in the drawers of a filing
cabinet. The system uses a linked list in which each node represents a drawer of the filing cabinet. Each drawer
in the list contains a pointer to the first node of a linked list of student records, a pointer to the next drawer in
the filing cabinet, and the maximum student ID number that can be filed in that drawer. Within each drawer,
the student records are stored by student ID number in ascending order. The drawers in the filing cabinet are
ordered by the maximum student ID number that can be filed in each drawer. The maximum student ID number
for the last drawer in the cabinet is greater than the largest possible student ID number.

 The diagram below illustrates the structure of the filing system. The first node in the list of drawers would be

pointed to by the private data member drawerList of the FilingCabinet class as declared on the next
page.

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
7

 The following declarations represent this filing system.

struct StudentNode
{
 int idNum;
 StudentNode * next;

 // ... other student information not shown
};

struct DrawerNode
{
 int drawerMaxID;
 StudentNode * studentList; // if drawer is empty, studentList is NULL
 DrawerNode * next;
};

class FilingCabinet
{
 public:
 DrawerNode * FindDrawer(int studentID) const;
 // precondition: this FilingCabinet has at least one drawer;
 // studentID is less than or equal to drawerMaxID
 // of the last drawer
 // postcondition: returns the first DrawerNode * d such that
 // studentID is less than or equal to d->drawerMaxID

 void RemoveStudent(int studentID);
 // precondition: this FilingCabinet has at least one drawer;
 // studentID is less than or equal to drawerMaxID
 // of the last drawer
 // postcondition: if there is a node containing studentID in this
 // FilingCabinet, that node has been removed from its
 // drawer; otherwise this FilingCabinet is unchanged

 private:
 DrawerNode * drawerList;

 // ... constructor, other member functions, and data not shown
};

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
8

(a) Write the FilingCabinet member function FindDrawer, which is described as follows.
FindDrawer returns a pointer to the drawer in which studentID would be found. FindDrawer
returns the first drawer in the list for which studentID is less than or equal to the maximum student ID
number that can be filed in the drawer.

 Complete function FindDrawer below.

DrawerNode * FilingCabinet::FindDrawer(int studentID) const
// precondition: this FilingCabinet has at least one drawer;
// studentID is less than or equal to drawerMaxID
// of the last drawer
// postcondition: returns the first DrawerNode * d such that
// studentID is less than or equal to d->drawerMaxID

(b) Write the FilingCabinet member function RemoveStudent, which is described as follows.
RemoveStudent should find the drawer in which studentID should be located and remove the list
node containing that student ID from the list associated with that drawer (calling delete as necessary). If
a node containing studentID is not in the drawer then the FilingCabinet is unchanged.

 In writing RemoveStudent, you may call FindDrawer specified in part (a). Assume that
FindDrawer works as specified, regardless of what you wrote in part (a).

 Complete function RemoveStudent below.

void FilingCabinet::RemoveStudent(int studentID)
// precondition: this FilingCabinet has at least one drawer;
// studentID is less than or equal to drawerMaxID
// of the last drawer
// postcondition: if there is a node containing studentID in this
// FilingCabinet, that node has been removed from its
// drawer; otherwise this FilingCabinet is unchanged

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
9

 3. This question involves reasoning about the code from the Marine Biology Case Study. A copy of the code
is provided in the Appendix.

 The original version of the case study uses a two-dimensional matrix, myWorld, to represent the world in
which the simulation takes place. Consider an alternate representation where the fish are stored in a binary
search tree. myWorld is replaced by myFishBSTRoot, a pointer to the root node of the binary search
tree. The fish are stored in the binary search tree according to the ordering of their positions, top-down,
left-right (row-major order).

 The following overloaded operator has been added to the public section of the Fish class.

 bool operator < (const Fish & rhs) const;
 // postcondition: returns true if the location of this fish occurs
 // before the location of rhs in row-major order

 In the example below, myFishBSTRoot points to the root node of a binary search tree containing seven fish

(each indicated by the coordinates of its position).

 The binary search tree of fish will be implemented using the following declaration.

struct Node
{
 Fish theFish;
 Node * left;
 Node * right;

 Node();
 // sets theFish to emptyFish, left and right to NULL
 Node(const Fish & fsh);
 // sets theFish to fsh, left and right to NULL
};

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
10

 Consider the following changes (shown in bold) to the private section of the Environment class.

 private:

 bool InRange(const Position & pos) const;
 // postcondition: returns true if pos in grid,
 // returns false otherwise

 void AllFishHelper(Node * root, apvector<Fish> & fishList,
 int & index) const;

 void AddFishHelper(Node * & root, const Fish & fsh);

 Node * myFishBSTRoot; // root pointer for binary search
 // tree of fish

 int myNumRows;
 int myNumCols;
 // from file input when environment constructed

 int myFishCreated; // # fish ever created
 int myFishCount; // # fish in current environment

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
11

(a) The Environment member function AllFish is modified to use the private helper function
AllFishHelper as follows.

apvector<Fish> Environment::AllFish() const
// postcondition: returned vector (call it fishList) contains all
// fish in top-down, left-right order:
// top-left fish in fishList[0],
// bottom-right fish in fishList[fishList.length()-1];
// # fish in environment is fishList.length()
{
 apvector<Fish> fishList(myFishCount);
 int index = 0;
 apstring s = "";

 AllFishHelper(myFishBSTRoot, fishList, index);

 for (k = 0; k < myFishCount; k++)
 {
 s += fishList[k].Location().ToString() + " ";
 }
 DebugPrint(5, "Fish vector = " + s);
 return fishList;
}

 Write the private Environment member function AllFishHelper, which is described as follows.

AllFishHelper should add all the fish in the tree represented by root to fishList, starting from
index. It is guaranteed that fishList is large enough to hold all the fish in the tree.

 In writing AllFishHelper, you may use any Environment member functions or the public
member functions of any other class used in this case study, including Fish::operator < specified at
the beginning of the question. Assume that all member functions work as specified.

 Complete function AllFishHelper below.

void Environment::AllFishHelper(Node * root, apvector<Fish> & fishList,
 int & index) const
// precondition: 0 <= index < fishList.length();
// there are no more than fishList.length() – index fish
// in the subtree represented by root
// postcondition: All fish in the subtree represented by root have been
// added to fishList in top-down, left-right order,
// starting from index;
// index has been increased by the number of fish
// added to fishList

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
12

(b) The Environment member function AddFish is modified to use the private helper function
AddFishHelper as follows.

void Environment::AddFish(const Position & pos)
// precondition: no fish already at pos, i.e., IsEmpty(pos)
// postcondition: fish created at pos
{
 if (! IsEmpty(pos))
 {
 cerr << "error, attempt to create a fish at non-empty: "
 << pos << endl;
 }

 myFishCreated++;
 AddFishHelper(myFishBSTRoot, Fish(myFishCreated, pos));
 myFishCount++;
}

 Write the private Environment member function AddFishHelper, which is described as follows.

AddFishHelper should insert the fish into the binary search tree represented by root.

 In writing AddFishHelper, you may use any Environment member functions or the public
member functions of any other class used in this case study, including Fish::operator < specified at
the beginning of the question. Assume that all member functions work as specified.

 Complete function AddFishHelper below.

void Environment::AddFishHelper(Node * & root, const Fish & fsh)
// precondition: root represents a subtree of a binary search tree;
// nodes are ordered by fish position; no node in the
// tree contains a fish at the same position as fsh
// postcondition: Fish fsh has been added to the subtree represented by
// root, maintaining correct order of nodes

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
13

 4. Consider the problem of separating a string into its component pieces, called tokens. The tokens of a string are
its substrings that do not contain white space (spaces and tabs). For example:

string # tokens tokens

"" 0
"apple" 1 "apple"
"big red house" 3 "big", "red", "house"
" this is a test" 4 "this", "is", "a", "test"

 The functionality of separating a string into its tokens can be encapsulated in a StringTokenizer class.

The class provides access to the tokens in a string and has the following characteristics.

 • A constructor that allows an instance to be created using a string parameter as the source of tokens
 • A member function that returns the number of tokens
 • A member function that returns the string that is the kth token where the first token has index 0 and

the last token has index one less than the number of tokens
 • An appropriate data representation to support O(1) implementation of these two member functions.

(a) Write the class declaration for StringTokenizer as it would appear in a StringTokenizer.h
file. In writing the declaration, you must:

 • choose appropriate identifiers for member functions and data members,
 • provide the functionality specified above,
 • use the const qualifier for functions and parameters where appropriate,
 • provide a data representation consistent with the specification above, and
 • make design decisions that are consistent with information-hiding principles.

 YOU SHOULD NOT WRITE THE IMPLEMENTATIONS OF THE MEMBER FUNCTIONS OR
THE CONSTRUCTOR OF THE StringTokenizer CLASS.

 Complete the StringTokenizer class declaration on the following page in the skeleton provided.

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

 GO ON TO THE NEXT PAGE.
14

class StringTokenizer
{
 public:

 private:

};

2003 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2003 by College Entrance Examination Board. All rights reserved.
Available to AP professionals at apcentral.collegeboard.com and to

students and parents at www.collegeboard.com/apstudents.

15

(b) Write free function CreateAcronym, which is described as follows. CreateAcronym takes a string,
str, as a parameter and returns a string that is the acronym formed from the first character of each token of
str. The following table shows several examples of calls to CreateAcronym.

str String returned by

CreateAcronym(str)

"red orange yellow green blue indigo violet" "roygbiv"

" as soon as possible" "asap"

"Rolling on the floor laughing" "Rotfl"

"As Far As I Know" "AFAIK"

 More formally, the acronym for a string str is formed by concatenating the first character of each token

of str in the same order that the tokens appear in str.

 In writing CreateAcronym, you must use the StringTokenizer class you designed in part (a).
To receive full credit, the tokens of str must only be obtained by using the member functions of the
StringTokenizer class that implement the specification given at the beginning of the question.
Assume that the StringTokenizer has been implemented as specified.

 Complete function CreateAcronym below.

apstring CreateAcronym(const apstring & str)

END OF EXAMINATION

