Java Au Naturel

Guide to Object Oriented Design

Java 2 with Swing

Dr. William C. Jones, Jr.

email jonesw@ccsu.edu

Department of Computer Science

Central Connecticut State University

web page: www.cs.ccsu.edu/~jones/book.htm
printed 2/17/02 copyright 2002

Java Au Naturel
Table Of Contents

Chapter 1 Objects 34 pages
1.1 Using Turtle objects to draw pictures.
1.2 A complete Java application program using the basic four Turtle methods.
1.3 Afirstlook at inheritance: defining instance methods in Turtle subclasses.
1.4 Additional Turtle methods; identifiers versus keywords.
1.5 Compiling and running an application program.
1.6 Sending messages to objects.
1.7 Three application programs using other kinds of objects.
1.8 Program development: Analysis, Logic design, Object design, Coding.
1.9 Placing Java in history.
1.10 Fractal Turtles (*enrichment).
----- Chapter review and answers to exercises.
Chapter 2 Conditionals and Boolean Methods 36 pages
2.1 Using Vic objects to control appliances.
2.2 Defining a subclass containing only instance methods.
2.3 The if statement.
2.4 Using class methods and javadoc comments in a program.
2.5 The if-else statement and the block statement.
2.6 Boolean methods and the not-operator.
2.7 Boolean variables and the assignment operator.
2.8 Boolean operators and expressions; crash-guards.
2.9 Getting started with UML class diagrams and object diagrams.
2.10 Analysis and Design example: complex conditionals.
----- Chapter review and answers to exercises.
Chapter 3 Loops and Parameters 32 pages
3.1 The while statement.
3.2 Using the equals method with String variables.
3.3 More on UML diagrams.
3.4 Using private methods and the default executor.
3.5 Afirstlook at declaring method parameters.
3.6 Returning object values.
3.7 More on the Analysis and Design paradigm.
3.8 Analysis and Design example: finding adjacent values.
3.9 Turing machines (*enrichment).
3.10 Javadoc tags (*enrichment).

Chapter review and answers to exercises.

Interlude Integers and For-loops 6 pages

Y Y
Chapter 4 Instance Variables 38 pages
4.1 Analysis and Design of basic games.
4.2 Input and output with JOptionPane dialog boxes.
4.3 Declaring instance variables: a first look at encapsulation.
4.4 Defining constructors; inheritance.
4.5 Integer instance variables.
4.6 Making Random choices.
4.7 Overloading, overriding, and polymorphism.
4.8 The rules of precedence for operators.
4.9 Analysis and Design example: the game of Nim.
4.10 Analysis and Design example: the game of Mastermind.
411 Using BlueJ with its debugger.
----- Chapter review and answers to exercises.
Chapter 5 Class Methods and Class Variables 34 pages
5.1 Defining class methods.
5.2 Declaring class variables; encapsulation and scope.
5.3 Finallocal, instance, and class variables.
5.4 Two new String methods.
5.5 Implementing a Vic simulator with Strings.
5.6 Case Study: introduction to networks.
5.7 Extending the Network class.
5.8 Analysis and Design example: the Reachability Problem.
5.9 Recursion (*enrichment).
5.10 More on JOptionPane (*Sun library).
----- Chapter review and answers to exercises.
Review: Overall Java Language So Far 6 pages
Chapter 6 Basic Data Types and Expressions 42 pages
6.1 Double values, variables, and expressions.
6.2 Creating your own library classes.
6.3 Basic String methods; the Comparable interface.
6.4 Character values and String's charAt method.
6.5 Long integers; casts and conversions; the Math class.
6.6 Formatted output to a JTextArea in a JScrollPane.
6.7 Analysis and Design example: the RepairOrder class.
6.8 Analysis and Design example: Model/View/Controller.
6.9 More on debugging your program: tracing and type-checking.
6.10 More on Random, NumberFormat, and DecimalFormat (*Sun library).
----- Chapter review and answers to exercises.
Chapter 7 Arrays 40 pages
7.1 Analysis and Design of the Worker class.
7.2 Analysis and Design example: finding the alphabetically first.
7.3 An array of counters, an array of Strings.
7.4 Implementing the Worker class with arrays.
7.5 Analysis and Design example: finding the average in a partially-filled array.
7.6 Implementing the WorkerList class with arrays.
7.7 Afirstlook at sorting: the insertion sort.

A first look at two-dimensional arrays: implementing the Network classes.

Implementing a Vic simulator with arrays.

Command-line arguments.

Implementing Queue as a subclass of ArrayList (*enrichment).
More on System, String, and StringBuffer (*Sun library).
Chapter review and answers to exercises.

Chapter 8 Elementary Graphics

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

The JApplet, Color, and Graphics2D classes.

Five Shape classes: lines, rectangles, and ellipses.
Analysis and Design example: the Flag software.
Iterative Development of the Flag software.
Animation in a JApplet.

Review of the software development paradigm.
Common looping patterns.

Case Study in animation: Colliding Balls.
Implementing the Turtle class.

About Font, Polygon, and Point2D.Double (*Sun library).
Chapter review and answers to exercises.

Chapter 9 Event-Driven Programming

9.1
9.2
9.3
9.4
9.5
9.6
9.7

JFrames, Components, and WindowListeners.

JPanels, Containers, and LayoutManagers.

JLabels, JTextFields, and ActionListeners.

Inner classes and the secondary default executor.

JButtons and EventObijects.

Model/View/Controller pattern applied to Car Rental software.
JSliders and ChangeListeners.

Swing Timers.

JComboBoxes using arrays of Objects.

JCheckBoxes, JRadioButtons, ButtonGroups, and ItemListeners.
Of Mice and Menus.

More on LayoutManager and JList (*Sun library).

More on JComponent, Imagelcon, and AudioClip (*Sun library).
Chapter review and answers to exercises.

Chapter 10 Exception-Handling

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

Problem description for the Investor software.
Handling RuntimeExceptions; the try/catch statement.
Basic text file input; handling checked Exceptions.
Throwing your own Exceptions.

Analysis, Test Plan, and Design for the Investor software.
Version 1 of Iterative Development.

Version 2 of Iterative Development.

Version 3 of Iterative Development.

Additional Java statements (*enrichment).

About Throwable and Error (*Sun library).

Chapter review and answers to exercises.

34 pages

43 pages

37 pages

Vi

Chapter 11 Abstract Classes and Interfaces

111
11.2
11.3
114
115
11.6
11.7
11.8
11.9
11.10
11.11

Analysis and Design of the Mathematicians software.
Abstract classes and interfaces.

More examples of abstract classes and polymorphism.
Double, Integer, and other wrapper classes.
Implementing the Fraction class.

Implementing the Complex class.

Implementing the VeryLong class using arrays.

Implementing the NumericArray class with null-terminated arrays.

Too many problems, not enough solutions (*enrichment).
Threads: producers and consumers (*enrichment).
More on Math and Character (*Sun library).

Chapter review and answers to exercises.

Chapter 12 Files and Multidimensional Arrays

121
12.2
12.3
12.4
125
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

Analysis and Design of the Email software.
FileReader and BufferedReader for input.
FileWriter and PrintWriter for output.

The StringTokenizer and StreamTokenizer classes.
Defining and using multidimensional arrays.
Implementing the Email software with a two-dimensional array.
Using a two-dimensional array of airline data.

The RandomAccessFile class.

How buffering is done.

Additional Java language features (*enrichment).
Java bytecode commands (*enrichment).

About Networking using Sockets (*Sun library).
About File and JFileChooser (*Sun library).
Chapter review and answers to exercises.

Chapter 13 Sorting and Searching

131
13.2
13.3
13.4
135
13.6
13.7
13.8
13.9

The SelectionSort Algorithm for Comparable objects.

The InsertionSort Algorithm for Comparable objects.

Big-oh and Binary Search.

The recursive QuickSort Algorithm for Comparable objects.
The recursive MergeSort Algorithm for Comparable objects.
More on big-oh.

The HeapSort Algorithm for Comparable objects.

Data Flow Diagrams.

About the Arrays utilities class (*Sun library).

Chapter review and answers to exercises.

Chapter 14 Stacks and Queues

141
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

Applications of stacks and queues.

Implementing stacks and queues with arrays.
Implementing stacks and queues with linked lists.
Interface for priority queues.

Implementing priority queues with arrays.
Implementing priority queues with linked lists.
Implementing priority queues with linked lists of queues.
Sorting and big-oh performance.

External sorting: file merge using a priority queue.
About Stack and deprecated Vector (*Sun library).
Chapter review and answers to exercises.

Vi

40 pages

36 pages

34 pages

38 pages

Vil

Vil

Chapter 15 Collections and Linked Lists 40 pages

151
15.2
15.3
154
155
15.6
15.7
15.8
15.9
15.10
15.11

Analysis and Design of the Inventory Software.

Implementing the Collection interface with arrays.

Linked lists with a nested private Node class.

Implementing the Collection interface with linked lists.

Recursion with linked lists.

Implementing the Iterator interface for an array-based Collection.
Implementing the Iterator interface for a linked-list-based Collection.
Implementing a modifiable Collection with linked lists.
Implementing the Listlterator interface with linked lists.
Implementing the Listlterator interface with doubly-linked lists.
About AbstractList and AbstractCollection (*Sun library).
Chapter review and answers to exercises.

Chapter 16 Maps and Linked Lists 36 pages

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10

Basic Scheme language elements.

Design of the Scheme interpreter.

The Map interface and the Mapping interface.

Implementing the Mapping interface with a partially-filled array.
Implementing the Mapping interface with a linked list.
Modifying a linked list.

Implementing the Iterator interface as a nested class.

Hash tables.

Further development of Scheme's List class.

About Map, AbstractMap, HashMap, and TreeMap (*Sun library).
Chapter review and answers to exercises.

Chapter 17 Binary Trees 38 pages

171
17.2
17.3
17.4
175
17.6
17.7
17.8
17.9
17.10

Analysis and Design of the Genealogy Software.
Implementing the Genealogy software with a binary tree.
Searching through a binary tree.

Implementing the Mapping interface with a binary search tree.
Implementing the Iterator interface for a binary search tree.
Red-black and AVL binary search trees.

Inductive reasoning about binary trees.

2-3-4 trees and B-trees.

Implementing priority queues with binary search trees.
Huffman codes (*enrichment).

Chapter review and answers to exercises.

Appendix A Guidelines for Program Style APP-1
Appendix B Glossary of Terms APP-5
Appendix C Common Compile-Time Errors APP-13
Appendix D Java Reserved Words APP-18
Appendix E Sun Library Classes APP-19
Appendix F Major Programming Projects APP-25

total: 689 pages plus preface and contents

viii viii

Preface for Students

Software development with an object-oriented approach is the fundamental subject of this
book. Java is a programming language used to create the animations you see when you
browse the web. Of all the programming languages whose use is wide-spread, Java is
the best for learning and doing object-oriented software development. That is why Java
is used in this computer science book.

You only learn by doing. So in this book, you will work with many different situations
where software development is necessary. That way, you can see how to apply newly-
learned techniques in a variety of contexts. When you need a language feature to
accomplish a certain purpose, that is when you learn it. If it has several alternatives and
you do not need them at that point or in the near future, you do not learn them then; you
wait until you need them.

When you learn to speak a natural language such as German or Spanish, you start with a
few sentences that are useful in key situations. You gradually expand your repertoire of
sentences. You learn grammatical principles that apply to several sentences you already
know how to use.

You do not start by learning all the conjugations of verbs and all the declensions of
nouns. Incremental development is far more effective: Add items a few at a time,
mastering those before you add more. And, most important, learn what you can
immediately use in realistic conversations.

You should learn a programming language the same way. You should not start by
learning Java's eight different primitive types or its five different control statements. You
should start by seeing how to develop software for a particular realistic situation. And
you should learn the language features you need for the situation as the need arises.

This book starts by introducing you to objects that make drawings. In this context you
learn to send messages to objects to carry out simple tasks. More important, you learn
how to "teach" those objects to put together a sequence of simple actions to perform a
complex task. These "better-trained" objects have new capabilities in addition to the
ones they inherit from the original specifications. This inheritance technique of course
makes your job much easier. You can do bigger jobs with less work and less chance of
getting it wrong if you have objects take over most of the work. When objects are used
this way, they should be thought of as your agents or executive assistants.

Chapter One explains the details of compiling and executing a program. It introduces
much of the vocabulary you need. It establishes the framework for Java programs. And
it gives an overview of the book with a look at other contexts where objects are used to
perform useful tasks. This is a foretaste of what is to come, so you are not expected to
fully understand at this point everything it mentions.

Chapter Two introduces a quite different software context. The software provided to you
defines objects that control the basic physical actions of electronic equipment. Your job
is to develop additional software that puts these basic actions together in combinations
that perform tasks that the purchaser of the electronic equipment finds useful. You learn
to use inheritance in this new context. Then you see how to have objects select between
two courses of action depending on the circumstances. You also learn a simple method
of diagramming the relationships among classes of objects. It is a widely used technique
that is part of the Unified Modeling Language (UML). The UML is the industry standard
for modeling software.

Chapter Three shows you how to teach objects to repeat a sequence of actions many
times until a task is accomplished. This ability leads to more complex programs, so we
discuss a reliable process for developing the logic to solve a problem and translate it into
a Java program. This is the one chapter that does not introduce a new major context for
developing software.

Chapter Four switches to the context of game-playing programs. In this context, you
learn how to build objects "from scratch”, specifying what they know as well as what they
can do. By this time you can write interesting and useful programs using only the
standard library of objects that comes with every Java installation. The game-playing
software interacts with the outside world through the keyboard and screen rather than via
signals to and from electronic equipment or to a drawing surface.

Chapter Five completes the presentation of basic language features you need for working
with objects in your programs. At this point you can construct a complete string-based
simulation of the electronic equipment you worked with in earlier chapters. A case study
on networks lets you see the interaction of all of the object-oriented concepts and most of
the language features applied in another context. The situation that the networking
material describes is key to many important real-life problems. The analysis and solution
of some of these problems can be quite complex; it is the subject of more advanced
courses in computer science. But the discussion here is quite elementary.

Chapter Six expands your arsenal of basic types of values to include characters and
numbers with decimal points (heretofore you only had the whole-number and true-false
kinds of values). It also gives you a full set of methods for dealing with strings of
characters. These language features are introduced in the context of software to
schedule work orders at a car repair shop using the Model/View/Controller approach and
several kinds of objects at once.

Chapter Seven gives you the tools you need to work with large masses of data. This is in
the context of software to handle a database of people working for a particular company.
A re-implementation of a simulation of the electronic-equipment software from Chapters
Two and Three helps you solidify your understanding of the key concept of arrays.

The first seven chapters present the features of Java most frequently used in this book,
together with a moderate number of examples. Many of the concepts, especially the
various uses of arrays, cannot be learned well enough without a great deal of practice.
The remaining ten chapters give you that practice. Their primary purpose is to

(a) improve your understanding of principles and techniques of software design and
development, and (b) reinforce the concepts in the basic first seven chapters.

Each of those last ten chapters presents a different software design and development
situation. The emphasis is on techniques for creating quality software. Each of
Chapters Eight through Eleven presents only a few new Java language features.
Chapters Twelve and later do not present any new language features.

In summary

Chapter One: Turtle objects can do simple tasks such as draw a line or move to
another position. You use Java to combine these simple actions into complex tasks
such as having a Turtle draw a flower garden.

Chapters Two and Three: Stick figures called Vic objects can do simple tasks such
as put a compact disk in or out of the current slot and move to the slot before or after
the current slot. You use Java to combine these simple actions into complex tasks
that move several CDs where you want them.

Chapters Four and Five: You use Java to define the simple tasks that objects can
do. You apply these language skills to define how game-playing objects interact with
a human player, and to define how the stick figure objects perform their simple tasks.
You may also, if you wish, skip directly to Chapter Eight on graphics to learn to define
how Turtle objects perform their simple tasks.

Chapter Six: You use Java to develop commercial software that defines how several
classes of objects perform simple tasks and then has these several classes of
objects cooperate to accomplish a complex task.

Chapter Seven: You use Java for software handling many objects at once.

Re-read this summary once or twice as you progress through the textbook, whenever you
get the feeling that you cannot see the forest for the trees.

You cannot avoid heavy technical vocabulary in a first course in computer science. But
as a student you have a right to short paragraphs and simple sentences to explain the
vocabulary and the difficult concepts accurately. This book makes a special effort to give
you just that.

You should work out most of the unstarred exercises in the book. Most should take less
than ten minutes. The answers to them are at the end of the corresponding chapter.
This will help you gain a thorough understanding of the concepts rather than a superficial
one. This book does not require any knowledge of programming or any mathematics
beyond elementary algebra and a bit of trig. But it does require that you practice what
you read about. Reading alone will not suffice -- you only learn by doing!

1-1 Java Au Naturel by William C. Jones 1-1

1 Objects

This chapter presents an overview of object-oriented programming in Java. Sections 1.1
through 1.4 show you how to control an object that can draw pictures. This object is
called a turtle because it is based on the Logo programming language, in which a turtle
icon does the drawing.

You will learn to create turtle objects and to send them messages to take actions. A
turtle understands only eight elementary kinds of messages, but Java lets you teach the
turtle new messages that are combinations of existing ones. You supply the artistic ability
by deciding which messages to send in what order; the turtle carries out your requests.

The real purpose of the first part of this chapter, however, is to give you the opportunity to
write programs that will impress your friends and relatives. Naturally, you cannot expect
to be able to create an interesting program from scratch until you have been studying
computer science for several weeks. But you can download the three-page turtle
software from this book's website or type it in from the listings in Chapter Eight. Then,
with the help of these turtle objects, you can create a program that draws complex
pictures. When your friends and relatives ask you what you have learned to do in the
course, you will have something good to show them by the end of your first week.

In this context, you will learn to define executable Java programs and to define instance
methods without parameters or return values. Section 1.5 explains in detail how to
compile and execute your programs in the terminal window.

Later sections give examples of programs using other kinds of objects. One is a program
that sends messages to portfolio objects to perform financial-market tasks. Another is a
program that sends messages to other kinds of objects to perform personnel database
tasks. We even include a very simple program developed in Java from scratch, using
only facilities that come with every Java compiler. This foretaste requires showing you
language features whose full explanation is in Chapters Two through Four, so you are not
responsible for remembering these features at this point.

1.1 Using Turtle Objects To Draw Pictures

Turtle objects are derived from the Logo programming language, which has been around
for decades. When you run a Java program that uses Turtle objects, you have a drawing
surface on which a Turtle is positioned, initially facing due East. The Turtle is carrying a
bucket of paint and a paint brush (too tiny for you to see on the screen). The Turtle
moves one little Turtle step at a time (these steps are also known as pixels). The three
most useful requests that a Turtle understands are named pai nt, nove, and

swi ngAr ound. Examples of their use are as follows:

nove(45, 20) sends a message that causes the Turtle to turn 45 degrees to its left
and then walk 20 little Turtle steps, without leaving any marks. This message is used
to move the Turtle from one position to another on the drawing surface.

pai nt (90, 30) sends a message that causes the Turtle to turn 90 degrees to its
left and then walk 30 little Turtle steps, dragging its paintbrush behind it. This
message is used to draw a straight line on the drawing surface, going off at the
specified angle from the current position.

pai nt (- 60, 50) sends a message that causes the Turtle to turn 60 degrees to its
right and then walk 50 little Turtle steps, drawing a line as it goes. That is, a negative
number for the angle causes a right turn; a positive number for the angle causes a
left turn; and zero for the angle causes no turn at all. This applies to nove as well.

1-2 Java Au Naturel by William C. Jones 1-2

swi ngAr ound(100) sends a message that causes the Turtle to put the paintbrush
on a rope and swing it around its head, thereby drawing a circle. The length of the
rope is given as 100 Turtle steps (pixels). So the Turtle paints a circle of radius 100
with itself at the center.

Objects in Turtle programs

The programs to control the computer chip are loaded from a permanent storage space,
such as a hard disk, into RAM (Random Access Memory). RAM storage gives very fast
access to the programs and the data they use. Each time you run the program, it loads
from permanent storage again and starts afresh.

A program that uses Turtles must create an internal description of each Turtle and put
that data in RAM. This internal description is an object; it records the Turtle's current
position and heading. The phrase new Turtl e() in a program creates the Turtle
object.

The phrase Turtl e sam in a program sets aside a part of the RAM's data area, called
a variable, which can refer to a Turtle object (the internal description of a drawing
instrument). The phrase Turtl e sam also declares that sam is the name for that
variable. It is difficult to tell a particular Turtle to carry out some action if the Turtle does
not have a nhame you can use. So Turtle programs often contain a sequence such as the
following, which lets later parts of the program refer to the Turtle as sam

Turtle sam
sam = new Turtle();

When the Turtle is first created, it is in the center of the drawing surface, facing due East
and carrying a can of black paint. The drawing surface is 760 pixels wide and 600 pixels
tall (because some computer monitors are not much larger than that in size). Drawings
outside of that range will not appear on the drawing surface.

lllustration of basic Turtle messages

Figure 1.1 shows how the drawing looks after a newly-created Turtle receives the three
messages pai nt (90, 7); nove (0, 2); paint (0, 2); inthatorder. The tiny
figure indicates the position of the Turtle, and the Turtle's
head indicates its heading. Each pai nt message colors in
the pixel the Turtle starts on but not the one it ends up on.

If for instance sue refers to some Turtle, sue. nove(0, 7) j;
is what you write in a Java program to tell that Turtle to move
7 little Turtle steps straight ahead (without first turning), and
sue. pai nt (180, 30) is what you write to tell that Turtle to
turn completely around and then draw a line 30 little Turtle
steps long. Later in this chapter you learn Turtle messages
that write words and change the color of parts of the drawing.
But we keep things simple for now with just these three
kinds of messages. Figure 1.1 the effect of
paint(90,7); move(0,2);
paint(0,2);

Exercise 1.1 Write a sequence of messages that causes a Turtle named sue to draw a
rectangle twice as wide as it is tall, with a height of 60 pixels.

Exercise 1.2 Write a sequence of messages that causes a Turtle named sam to draw a
lowercase letter 'r' 12 pixels tall and 8 pixels wide. Include the angled part of the 'r'.

1-3 Java Au Naturel by William C. Jones 1-3

1.2 A Complete Java Application Program Using The Basic Four
Turtle Methods

You write a program to perform a complex task by breaking the task down into a
combination of simple actions. An instruction to a Turtle to take an action is a command.
In a program, you need a semicolon at the end of each command in a sequence of
commands. The command and semicolon together are called a statement.

Suppose you want a Turtle to draw the capital letter 'H', 12 pixels tall and 6 pixels wide,
with a circle around it. The following sequence of statements can do this. The remark at
the right of each command explains the meaning of the command:

Turtle sam /1 declare the variable nanmed sam
sam = new Turtle(); /1 create the object samrefers to

sam pai nt (90, 12); /! draw the left side of the H

sam nove (-180, 6); /1 return to the center of the H

sam pai nt (90, 6); /! draw the crossbar of the H

sam nmove (90, -6); /1 nove to the bottomof the right side
sam paint (0, 12); /1 draw the right side of the H

sam nove (150, 6); /!l go to just above the center of the H
sam swi ngAround (9); /1 draw a circle enclosing the H

The // symbol in a program indicates a comment. That symbol is a signal that
everything on the rest of its line is to be ignored. Comments are only for humans to read,;
they do not affect the operation of a program.

The structure of an application program

The preceding sequence of nine statements describes a method for accomplishing a
task. Before you can have the computer follow this method of doing things, you have to
give the method structure. In Java, the way you do this is to put those statements
between matching left and right braces { and } and put the following heading above
them:

public static void main (String[] args)

You have then constructed a main method. The words in the heading of the main
method have meanings that will be explained in the next section. This section tells you
what you do to make a program; the next section tells you why you do it. That way, you
have an overview of the entire process before going into the details.

Some programs need hundreds of methods in order to do what they need to do. It would
be very difficult to keep track of all of them, their meanings and relationships, if they were
not organized in some reasonable way. The primary organizing unit in Java is called a
class (for reasons that will become clear later in this chapter). The general idea is, you
collect several methods together that are very closely related to each other and put them
in a single class. For instance, pai nt, swi ngAr ound, nove, and others are collected
in the Turtle class.

In Java, the way you signal that a number of methods belong to a particular class is to
put the method(s) between matching left and right braces { and } and put a heading
like the following above them, although you have a free choice of the name you use in
place of SomeClass:

public class Soned ass

14 Java Au Naturel by William C. Jones 14

A class containing a main method is usually called an application program. This book
does not put any method in an application program other than the main method. Listing
1.1 shows a complete Java application program using the preceding sequence of nine
statements to draw a letter 'H'.

Listing 1.1 An application program using a Turtle object

public class ProgranOne

{
/1 Draw an uppercase letter 'H, 12 pixels tall and 6 wi de.
/[l Put a circle around the outside of the 'H .
public static void main (String[] args)
{ Turtle sam /I create the variable named sam
sam = new Turtle(); /Il create the object samrefers to
sam pai nt (90, 12); /[l draw the left side of the H
sam nove (-180, 6);
sam pai nt (90, 6); /! draw the crossbar of the H
sam nove (90, -6);
sam paint (0, 12); // draw the right side of the H
sam nove (150, 6);
sam swi ngAround (9); /l draw a circle enclosing the H
} // this right-brace marks the end of the main nethod
} [/ this right-brace marks the end of the class

Programming Style Comments (the parts after the // symbols) are optional
Q in a program, but you should always have at least a comment before the main

method describing the purpose of the program. You should also make sure
that each right brace is lined up vertically with the corresponding left brace, and
that everything between the braces is indented by one tab position.

The result of executing ProgramOne is shown in Figure 1.2. Note that the capital 'H'
actually spans a total of seven pixels horizontally, since pai nt colors in the pixel the
Turtle starts on but not the pixel the Turtle ends on. The Turtle finishes just above the
middle of the 'H' facing south-south-west, indicated by the tiny circle.

Edit, compile, and run

First you type the lines of this program into a plain-
text file named Prograntne. j ava (because
ProgramOne is the name of the class) using a
word processor. The next thing you do is submit
this text file named Pr ogr anne. j ava to the
compiler program to see if it is correctly expressed
in the Java language. On the simplest systems, o
you do this by entering j avac Pr ogr anne. j ava
at the prompt in a terminal window (a window that
only allows plain text input and output; often called
the DOS window).

Figure 1.2 After execution of Listing 1.1

If the compiler does not detect any errors when you have it check out your program, it
translates your text file to an executable file named Pr ogr anOne. cl ass. It does not
translate anything after the // symbol on a line.

1-5 Java Au Naturel by William C. Jones 1-5

You then run the program by entering j ava Pr ogr antne atthe prompt in the terminal
window. This tells the runtime system to carry out the commands in the executable file.
You also need a compiled form of the Turtle class, which is available on this book's
website (or you could type it in from Section 8.11). This Turtle class lets you test the
programs you write.

Caution You must be careful in programs to capitalize letters in words

exactly as shown. The compiler program sees pai nt and Pai nt and
PAI NT all as three totally unrelated words, i.e., Java is case-sensitive.
Of those three words, Turtles only understand pai nt .

If you replaced sam by sue in every statement of Listing 1.1, it would make no
difference in the effect of the program. The choice of the name samfor the Turtle object
is arbitrary, as long as you spell and capitalize it the same way throughout your program.

Application program to draw two squares
If you want a Turtle to draw two squares side by side, you could have the runtime system
execute the program in Listing 1.2. The first two statements create the Turtle object and

position it in the center of the drawing area facing East. They also make sue contain a
reference to that Turtle object.

Listing 1.2 An application program using a Turtle object

public class TwoSquares

{
/[l Draw two 40x40 squares side by side, 10 pixels apart.
public static void main (String[] args)
{ Turtle sue;
sue = new Turtle();
sue. pai nt (90, 40); /[l draw the right side of square #1
sue. pai nt (90, 40); [/ draw the top of square #1
sue. pai nt (90, 40); /[l draw the left side of square #1
sue. pai nt (90, 40); /1 draw the bottom of square #1
sue. move (0, 50); /1 nove 50 pixels to the right
sue. pai nt (90, 40); /[l draw the right side of square #2
sue. pai nt (90, 40); /[l draw the top of square #2
sue. pai nt (90, 40); /[l draw the left side of square #2
sue. pai nt (90, 40); /1 draw the bottom of square #2
|
}

After the Turtle object is created, the next four statements draw the first square, 40 pixels
on a side. The last five statements of the program draw the second square of the same
size, 10 pixels away from the first square. Figure 1.3 shows the status of the Turtle
object and the drawing after execution of this program.

The order of the commands is important: You cannot send a message to sue to perform
an action before you store a Turtle object in the variable named sue (statement #2), and
you cannot do that before you declare that variable (statement #1).

1-6 Java Au Naturel by William C. Jones 1-6

the Turtle starts st the lower-right corner of the lefthand square, facing east,
and ends at the lower-right corner of the ather square, facing east.

starts here A ™. ends here

Figure 1.3 After execution of Listing 1.2

The meaning of some program elements

You are surely wondering why you need publ i ¢ and voi d and all the rest to make a
simple program. Each of the parts of a Java program has a purpose. The following
paragraphs, while not a full explanation, should give you some idea of what the purpose
is. These paragraphs also preview what you will see in the first half of this book.

A method is so called because it describes the method by which some objective is
achieved. For instance, the main method in Listing 1.2 describes a method of drawing
two squares.

Question: Why the matched pair of braces? Answer: They tell the compiler where a
class begins and ends and where a method begins and ends. This is needed because
you can have more than one class within a file and you can have more than one method
within a class. You will see an example of the latter in the next section.

Question: Why must one declare Turtl e sue when the next command sue = new
Turtl e() makes it quite clear that sue is a Turtle variable? Answer: You will
sometimes misspell a name. If the compiler were to accept the misspelled name as a
different variable, that could cause hard-to-find errors in your programs. But because
Java requires you to explicitly declare all names, you have little trouble finding
misspellings; the compiler points them out to you.

Question: Why the word publ i ¢ in the headings? Answer: An alternative is pri vat e.
If the main method were private, it could not be used by anything outside the class. The
terminal window is outside the class. So the runtime system cannot execute the main
method from the terminal window unless the main method is public. Similarly, the class
should be public instead of private so it can be used by anything outside the class. You
will see private methods in Chapter Three.

Question: Why the word st at i ¢ in the method heading? Answer: When a method
heading does not include st at i ¢, the compiler will not let you use the method unless
you first create an object to send the message to. At the time the j ava command in the
terminal window executes the main method, the runtime system has not yet created any
object to send the message to. So the main method must be marked st ati c. You will
see other kinds of methods marked st at i ¢ in Chapter Five.

Question: Why the word voi d in the method heading? Answer: When you send a
message, sometimes you get an answer back to use later in the program, and sometimes
you do not. The word voi d signhals that no answer will be sent back by this particular
method. Since there is no "later in the program" after the main method is executed, the
main method should be marked voi d. You will see non-void methods in Chapter Two.

Question: Why "void" instead of say "noAnswerGiven"? Why "main” instead of
"programStartsHere"? Why semicolons instead of commas? Answer: The designers of
Java decided that, where the choice was quite arbitrary, they would use the symbols and
signals from the C programming language, because most professional programmers are
familiar with it.

1-7 Java Au Naturel by William C. Jones 1-7

Question: Why the (String[] args) part? Answer: It can be used to get the
user's input (though it does not do so in this particular program). For instance, you may
have a Euchre-playing program you start by entering the basic j ava Euchre
command in the terminal window followed by two extra words. You can start it by
entering j ava Euchre 4 Engl i sh; it then allows four players and communicates in
English. Or you can start it by entering j ava Euchre 3 French, so it allows three
players speaking French. The runtime system usesthe (String[] args) partof
the main heading to send those two extra pieces of information to the main method.

For now, it would not hurt to treat that phrase as just one of those things you have to
have to make things work right in Java. Itis like the "ne" in the French phrase "ne
pouvez pas"; the "pas” means "not", but for some reason you have to tack on a "ne" to be
speaking correct French.

Exercise 1.3 Write an application program that creates one Turtle and has it draw a
lowercase 'b' 6 pixels wide and 12 pixels tall, without going over the same pixel twice.
Exercise 1.4 Write an application program that creates one Turtle and has it draw a
lowercase 'm' 8 pixels wide and 6 pixels tall.

Exercise 1.5 Write an application program that creates one Turtle and has it draw a
hexagon 50 pixels on a side.

Exercise 1.6* Write an application program that creates one Turtle and has it draw a
lowercase 'g' 6 pixels wide and 6 pixels tall, descending 3 pixels below the baseline,
without going over the same pixel twice.

Exercise 1.7* Write an application program that creates a Turtle and then draws a
house 200 pixels wide and 150 pixels tall, with a door and two windows.

Note: A star on an exercise means the answer is not in the book. Unstarred
exercises have the answers at the end of the corresponding chapter.

1.3 A First Look At Inheritance: Defining Instance Methods In
Turtle Subclasses

You can expect to draw a square in several different programs, with various Turtle
objects receiving that sequence of four pai nt (90, 40) messages. This was done twice
for sue in Listing 1.2. Fortunately, you can invent new messages for the Turtle that are
combinations of existing messages. This will simplify your programs.

For instance, you can define a new message named nakeBi gSquar e:
sue. makeBi gSquar e() tells sue to execute those four pai nt (90, 40) actions, and
sam makeBi gSquar e() tells samto execute those four pai nt (90, 40) actions.

You may also want to draw a small square in several different situations. The sequence
of four messages

pai nt (90, 10);
pai nt (90, 10);
pai nt (90, 10);
pai nt (90, 10);

could be quite common, sent to various Turtle objects. You can define a new message
named nmakeSnal | Squar e: sam makeSnmal | Squar e() tells samto carry out those
four pai nt (90, 10) actions, and sue. makeSmal | Squar e() tells sue to carry out
those four pai nt (90, 10) actions.

A simple Turtle object does not know the meaning of the two words makeBi gSquar e
and makeSnal | Squar e. They are not part of its vocabulary. You need a new class of

1-8 Java Au Naturel by William C. Jones 1-8

objects that can understand these two messages plus all the messages a Turtle
understands. Let us call this new kind of Turtle object a SmartTurtle. Then you could
rewrite the main method in Listing 1.2 to do exactly the same thing but with a simpler
sequence of statements, as follows:

public static void main (String[] args)
{ SmartTurtle sam

sam = new Smart Turtl e();

sam makeBi gSquar e() ;

sam nmove (0, 50);

sam makeBi gSquar e() ;
} | | ======================

How to define a class of objects

You may define a class that provides new messages and a new kind of object that
understands those messages. The class definition in Listing 1.3 says that, if you create
an object using the phrase new Smart Turtl e() instead of new Turtl e(), that
object will understand the makeBi gSquar e and makeSnal | Squar e messages as well
as all of the usual Turtle messages. In a sense, a SmartTurtle object is better educated
than a basic Turtle object.

Listing 1.3 The SmartTurtle class of objects

public class SmartTurtle extends Turtle

{
/1 Make a 10x10 square; finish with the sane position/heading.
public void makeSmal | Squar e()
{ paint (90, 10);
pai nt (90, 10);
pai nt (90, 10);
pai nt (90, 10);
|
/1l Make a 40x40 square; finish with the sane position/heading.
public void makeBi gSquar e()
{ paint (90, 40);
pai nt (90, 40);
pai nt (90, 40);
pai nt (90, 40);
|
}

A class definition that extends the capabilities of a Turtle object must have the heading
public class Wat ever NaneYouChoose extends Turtle

followed by a matched pair of braces that contain some definitions. The SmartTurtle
class definition contains two parts beginning publ i ¢ voi d. These two parts are
method definitions. The names chosen here are nakeBi gSquar e and

makeSnmal | Squar e, but they could be anything you choose. Just be sure that, when
you send these messages to an object, as in sam nakeBi gSquar e() or

sue. makeSnmal | Squar e() , you always spell them the way the method definition
shows, including capitalization, and finish with the empty pair of parentheses.

1-9 Java Au Naturel by William C. Jones 1-9

Each of the two method definitions in the SmartTurtle class describes one new message
in terms of previously-known messages. In the heading of the method definition,

publ i ¢ means that the statements in any class can send these methods to its
SmartTurtles. voi d means that these are definitions of actions to be taken instead of
guestions to be answered; you will see how to use and define questions in the next
chapter. The comments following the right braces (beginning with / /) are dividers that
help visually separate the various method definitions within the class definition.

Within the definition of this kind of method, you leave out the name of the variable that
refers to the object that receives the message. This lets you use any variable name you
like (such as sue, sam or whomever) when you write the command outside the method.
So the makeSmal | Squar e definition says that for any x, if you have previously defined
X = new Smart Turtl e(), then x. makeSmal | Squar e() has the same meaning as
the following:

. paint (90, 10);
. paint (90, 10);
. paint (90, 10);
. paint (90, 10);

X X X X

You can read the second method definition verbally as follows: Define an action method
named nakeBi gSquar e that any SmartTurtle object in any class can be asked to carry
out. Using this method sends a message asking the object to draw the four sides of a

square 40 pixels on a side, ending up with the same position and heading as at the start.

Programming Style You will find it much easier to understand a class definition
you have written if you mark the end of each method with a comment that
stands out clearly. This book puts "============" at the end of each method
definition. Some people prefer the phrase "End of method" or something more
specific such as "End of makeBigSquare".

Executors and instances

An object created by new Turtl e() is called an instance of the Turtle class, and an
object created by new Smart Turtl e() is called an instance of the SmartTurtle class.

You cannot use either of the two SmartTurtle methods of Listing 1.3 in an application
program without mentioning an instance of the SmartTurtle class in front of the method
name, separated from it by a dot (period). So these two methods are called instance
methods. The absence of the word st ati ¢ inthe heading signals this restriction -- a
main method is not an instance method.

A command of the form soneCbj ect . soneMessage() isamethod call. We say that
the object referenced before the dot is the executor of the method, since it executes the
commands in the method. Every call of an instance method requires an executor.

This vocabulary applies to Turtle methods as well as to SmartTurtle methods. So sue
refers to the executor in the method call sue. swi ngAr ound(30) . All three of pai nt ,
nove, and swi ngAr ound require an executor when they are used. So these three are
instance methods of the Turtle class. [Technical Note: Java has no official terminology
for what this book calls the "executor”; other names some people use are "target object",
"receiver”, and "implicit parameter".]

The object that executes the pai nt (90, 40) commands inside the definition of
makeBi gSquar e defaults to the executor of the nakeBi gSquar e method call, since
the executor of those commands is not explicitly stated. By contrast, you cannot call an
instance method from the main method without stating its executor, because the main

1-10 Java Au Naturel by William C. Jones 1-10
method itself has no executor to default to. The word st ati ¢ in the heading of the
main method signals that it has no executor.

Listing 1.4 illustrates the use of these new SmartTurtle commands in a program that

makes an X-shaped pattern of one large square with four small squares at its four
corners. Figure 1.4 shows the result of running this program.

Listing 1.4 An application program using a SmartTurtle object

public class SquarePattern

{
/1 Make an X shape with one big 40x40 square in the center
// and a small 10x10 square in each corner.
public static void main (String[] args)
{ SmartTurtle sue;
sue = new Smart Turtl e();
sue. makeBi gSquar e() ; [/l draw the center square
sue. nove (-90, 15); /1 go south
sue. nove (90, 15); /! nove to the southeast corner
sue. makeSmal | Squar e() ; /1 draw t he sout heast square
sue. nove (90, 70); /! nove to the northeast corner
sue. makeSmal | Squar e() ; [/l draw t he northeast square
sue. move (90, 70); /! nove to the northwest corner
sue. makeSmal | Squar e() ; /! draw t he northwest square
sue. nove (90, 70); /! nove to the sout hwest corner
sue. makeSmal | Squar e() ; [/l draw t he sout hwest square
|
}

the Turtle starts st the lower-right corner of the big square facing east,
and ends at the lower-left carner of the lower-left square facing south

O O
K/starts here
ends here Ny n 0

Figure 1.4 After execution of SquarePattern

Inheritance from the superclass

The SmartTurtle class in the earlier Listing 1.3 contains the makeBi gSquar e method
definition and the makeSmal | Squar e method definition explicitly. The phrase ext ends
Turtl e in the heading of the class definition means the SmartTurtle class indirectly
contains all the public method definitions it gets from the Turtle class. We say that
SmartTurtle objects inherit the Turtle methods (pai nt, nove, etc.).

Inheritance is what allows any SmartTurtle object to use all of the regular Turtle methods
in addition to those directly defined in the SmartTurtle class. In short, a SmartTurtle is a
kind of Turtle. Turtle is the superclass and SmartTurtle is the subclass in this
inheritance relationship. You will see examples of inheritance in most of the chapters of
this book.

1-11 Java Au Naturel by William C. Jones 1-11

When you decide what methods you need in a subclass of Turtle to accomplish a task,

you are doing object design. Designing useful objects "from scratch" requires knowing
a large number of language features, so it must wait until Chapter Four. Until then, our
object classes will extend interesting classes such as Turtle.

"Object orientation, involving encapsulation, inheritance, polymorphism, and abstraction,
is an important approach in programming and program design. It is widely accepted and
used in industry and is growing in popularity in the first and second college-level
programming courses. It facilitates the reuse of program components and the
management of program complexity, allowing large and complex programs to be written
more effectively and efficiently and with more confidence in their correctness than with
the more traditional purely procedural approach.” [AP Computer Science Ad Hoc
Committee Recommendations, October 2000]

Programming Style It is good style to use indentation and spacing in a

program to make the relationship of one line of the program to another clear.

The convention in Java is to indent one tab position at each line inside the

braces of a class definition. Indent another tab position at each line that is also
inside a method definition. If you want to separate statements into groups that do
separate tasks, do not use indentation to do so. Instead, use a blank line between the
groups, as shown in Listing 1.4.

Exercise 1.8 Write an application program that uses a SmartTurtle to draw two large
squares side by side, each with a small square centered inside it.

Exercise 1.9 Write a new instance method to be added to the SmartTurtle class: It has
the executor carry out the last two commands of Listing 1.4. Then rewrite Listing 1.4 to
call this new method three times, thereby shortening the logic.

Exercise 1.10 Write a dr awHexagon instance method to be added to the SmartTurtle
class: The executor draws a hexagon 30 pixels on a side in just six statements.
Exercise 1.11 Write an application program that uses a SmartTurtle object, as changed
by the preceding exercise, to draw three hexagons such that any two of them meet along
one side.

Exercise 1.12* Write a StarTurtle class with two instance methods: One draws a five-
point star (hint: turn 144 degrees) and one draws a six-point star (two overlapping
equilateral triangles with symmetry). Make them 60 pixels per line segment.

Exercise 1.13* Write an application program that uses a StarTurtle object, as defined in
the preceding exercise, to make an interesting drawing with at least five stars in it.
Exercise 1.14* Write an application program that draws ten big squares in the same
arrangement as the setup for bowling pins. Use a SmartTurtle object.

1.4 Additional Turtle Methods; Identifiers Versus Keywords

The Turtle carries ten cans of paint of various colors, not just one. If you want to switch
to e.g. red, you can do so with the following message:

sam switchTo (Turtle. RED).

Thereafter, all drawings are made in red (until you switch to another color). The ten
available colors are BLACK, GRAY, BLUE, GREEN, RED, YELLOW, ORANGE, PINK,
MAGENTA, and WHITE. You use Turtl e. WH TE when you want to erase something
you drew earlier; this helps you do animations.

You have to spell the names of the colors entirely in capitals, because that is how they
are defined in the Turtle class. You put "Turtle" in front of each color name so that the
compiler knows to look for the definition of the color name in the Turtle class. But within
an instance method in a subclass of Turtle, you can use the color names without the
class name, just as you can use method names without mentioning the executor.

1-12 Java Au Naturel by William C. Jones 1-12

The Turtle class has four more kinds of messages that you can send to a Turtle object:

fillGrcle(80) isthesameas sw ngAround(80) exceptthatthe circle is
completely filled with whatever the current drawing color is.

fill Box(20,90) draws a rectangle of width 20 and height 90 with the Turtle at the
center, and fills it in with whatever the current drawing color is.

say("what ever") prints what you have in quotes at the Turtle's current location.
sl eep(70) causes the Turtle to stop what it is doing for 70 milliseconds (0.070
seconds). This command lets you control the speed of animations.

These new methods do not change the position and heading of the object. If a number in
parentheses is not positive, the methods simply do nothing. By contrast, the nove and
pai nt methods do something useful when the numbers within their parentheses are
negative or zero: A negative angle indicates a turn to the right, and a negative distance
indicates a Turtle walking backwards.

A program using a FlowerMaker

Listing 1.5 contains an application program that creates a FlowerMaker kind of Turtle and
has it draw six flowers in a row, centered on the drawing surface. A FlowerMaker is
capable of drawing two flowers next to each other when you ask it to, 60 pixels apart.
After each pair of flowers the Turtle pauses for 300 milliseconds (0.3 seconds), because
that makes the drawing a little more interesting (hopefully). Then it prints a message
above the row of flowers. Figure 1.5 shows the result of executing this program.

Listing 1.5 An application program using most of the new Turtle methods

public class GardenApp
{

// Draw 6 flowers all in arow, with a word title.

public static void main (String[] args)

{ Fl ower Maker florist;
florist = new Fl ower Maker () ;
florist.drawlwoFl owers(); /1 the central two
florist.sleep (300);

florist.nmove (0, 120);
florist.drawlwoFl owers(); /1 the two right of center
florist.sleep (300);

florist.nmve (0, -240);
florist.drawlwoFl owers(); /[l the two left of center
florist.sleep (300);

florist.nmve (40, 130);

florist.switchTo (Turtle. BLUE);

florist.say ("My flower garden"); [// above the flowers
|

hily flosaeer garden

TTITYY

Figure 1.5 After execution of GardenApp

1-13 Java Au Naturel by William C. Jones 1-13

The FlowerMaker class

The class definition in Listing 1.6 says that objects declared as FlowerMakers have the
ability to understand the three new messages there in addition to all Turtle messages.
The dr awTwoFl ower s method in the top part of Listing 1.6 draws one flower, moves to
the right 60 pixels, draws a second flower, and then returns to the original starting point
and resumes the original heading. To do this right, you need to know that the

dr awFl ower method leaves the Turtle one pixel to the left of where it started, facing
south instead of east.

Listing 1.6 The FlowerMaker class of objects

public class Fl ower Maker extends Turtle
{
/[l Draw two flowers each 60 pixels tall.
/[l Start and end facing east at the base of the left flower.

public void drawlwoFl ower s()
{ drawFl ower();
nmove (90, 61);

dr awFl ower () ;
nmove (90, -59);
|

/[l Starts facing east at the base of the flower, right side,
// with the current draw ng col or being BLACK (for the sten).
/1 Ends facing south at the base of the flower, center.

public void drawFl ower ()

{ paint (90, 50); /1 right side of stem
pai nt (90, 2);
pai nt (90, 50); /1 left side of stem
paint (90, 1);
pai nt (90, 10); /1 one-fourth of the way up the stem
pai nt (-45, 8); /[l draw the twig for the right |eaf
drawLeaf () ;
pai nt (45, 10); /1 one-half of the way up the stem
pai nt (45, 8); /[l draw the twig for the left |eaf
drawLeaf () ;
pai nt (-45, 30); // to top of stem in the center
swi tchTo (RED);
fillGrcle (15); /1 draw the flower petals
swi tchTo (BLACK);
nove (180, 50); /[l return to the base of the fl ower
|

public void drawLeaf ()

{ switchTo (GREEN);
fillGrcle (3);
nmove (0, 3);
fillGrcle (2);
move (0, 2);
fillGrcle (1);
nmove (0, -13);
swi tchTo (BLACK);

|

1-14 Java Au Naturel by William C. Jones 1-14

A Turtle that executes the dr awFl ower method is initially facing east, assuming that the
flower is to grow to the north, which normal flowers do. The Turtle starts by drawing a
thick BLACK stem 3 pixels wide. As it makes the middle of the three strokes for the
stem, it stops 10 pixels up to make a leaf off to the right, then stops again 20 pixels up to
make a leaf off to the left. Then it draws a RED circle at the top of the stem to represent
the flower. Finally, it returns to the base of the stem, ending up facing south.

A Turtle that executes the dr awL.eaf method draws three overlapping GREEN circles,
each smaller than the one before. That will hopefully look rather like a leaf. Then it
moves back to the base of the 8-pixel-long twig and switches the drawing color back to
BLACK, which is what it was when the method was called. Note that the return to the
base is made using nove(O0, - 13) rather than nmove(180, 13), so that the Turtle's
heading remains as it was initially.

The definition of dr awFl ower is in terms of dr awlLeaf , and the definition of

dr awTwoFl ower s is in terms of dr awF|l ower . You may define a method in any terms
the object can understand. In particular, you may define a method in the FlowerMaker
class as a sequence of messages any Turtle object or any FlowerMaker object can
understand.

Your first thought is probably that this allows you to do something really silly, such as
define dr awOne to mean two messages of dr awTwo and define dr awTwo to mean two
messages of dr awOne. Yes, you can do that. If you then sent either of those messages
to an object, it would cause the program to crash. It is your responsibility to avoid such
silliness; objects are not smart enough to know when you make a logic error.

Two kinds of methods and classes

You have now seen two kinds of method definitions: A main method is a sequence of
instructions normally initiated from the terminal window. The main method is normally
called by j ava What ever in the terminal window, where the Whatever class contains
that main method. Its heading must be public static void main (String[]
ar gs) (except args could be any name you like). A method without st ati c inthe
heading is an instance method, specifying a sequence of actions carried out by its
executor. An instance method is typically called by putting an object value in front of the
method name, separated by a dot. That object value must refer to an instance of the
class the method belongs to, or a subclass of that class.

A method definition has two parts: the method heading (everything up to but not
including the first left brace) and the method body (the matched pair of braces and its
contents). For instance, the heading of the main method in Listing 1.5 is the line that
begins with publ i ¢ stati c and ends with the right parenthesis; the body of that
method is the thirteen statements that follow, together with the enclosing braces.

The heading public cl ass Wat ever signals a class definition. You have now
seen two kinds of class definitions: An application program is a class that contains a
main method. An object class is a class that contains one or more public instance
methods, such as the SmartTurtle class or the FlowerMaker class, and no main method.
These instance methods define what messages individual objects of that class can
"understand”. Most classes are object classes, i.e., they define a new class of object
(hence the name "class").

Identifiers and keywords

The name you choose for a method, variable or class is its identifier (e.g., makelLeaf ,
sam and Smart Turtl e). You can use letters, digits, and underscores to form an
identifier: Fl ower _maker and Bri ng_3_back are permissible names.

1-15 Java Au Naturel by William C. Jones 1-15

Caution You cannot have a blank within an identifier or have a digit as its
first character. A very common mistake is to start a program with
something like publ i ¢ cl ass Program Two. A blank in the middle of
the class name is not allowed.

You cannot change the spelling or capitalization of any of the keywords in a program,
such as public, cl ass, ext ends, stati c, voi d, and new. You never use capital
letters for them, and you never name a method, variable, or class with one of them.

The Java developers at Sun Microsystems Inc. have developed a library of over one
thousand classes for use by Java programmers. It comes with the standard installation
of Java that Sun provides. It does not include the Turtle class -- that was developed for
this book. We begin the serious use of the Sun standard library in Chapter Four, and
introduce over 150 of those classes by the end of Chapter Fifteen.

The word "String" in the heading of the main method is the name of a class in the Sun
standard library. The people who wrote the String class could choose whatever name
they wanted; but now that they have, you have to spell it and capitalize it exactly the
same way they did. Otherwise your program will not compile. Similarly, the word "Turtle"
was chosen arbitrarily by the developer of the Turtle class, and you have to spell it that
way to use it.

Programming Style The convention in Java is to name all classes starting
with a capital letter and all methods and non-constant variables starting with
a lowercase letter. It is good style to keep to that convention. You should
also use titlecase for names -- capitalizing only the first letter of each word
within a name (as in usel t Now) -- or underscoring (as in use_i t _now).

It is good programming style to choose a name for a method, variable, or class that
conveys its meaning. Note, for instance, that the object variable in Listing 1.5 is named
flori st, soyou can easily remember that it draws flowers. The names sue and sam
have been used only for objects that are not particularly distinguishable.

Language elements
Beginning in Chapter Two, sections that introduce new features of the Java language

usually conclude with a formal description of the new language elements. The following
is an example of such a description for most of what you have seen so far in this chapter:

L anguage elements
A CompilableUnit can be: public class ClassName { DeclarationGroup }
or: public class ClassName extends ClassName{ DeclarationGroup }

A DeclarationGroup is any number of consecutive Declarations.
A Declaration can be: public static void main (String [] args) { StatementGroup }

or: public void MethodName () { StatementGroup }

A StatementGroup is any number of consecutive Statements.

A Statement can be: ClassName VariableName ; e.g., Turtle sam;
or: VariableName = new ClassName () ; e.g., sam = new Turtle();
or: VariableName . MethodName () ; e.g., sam.drawF ower();

These descriptions are compact, but they can be difficult to make sense of at times
(examples of a principle often clarify the principle better than an explicit statement of the
principle). We will analyze the notation used in this particular description so that you will
be better able to understand similar descriptions later in this book. This notation is not
used anywhere in the book except in these special descriptions and the language review
at the end of Chapter Five.

1-16 Java Au Naturel by William C. Jones 1-16

Lines 1 and 2: The basic unit in a programming language is a CompilableUnit, i.e., the
contents of a text file that you can submit to a compiler and have translated to an
executable form. Line 1 says that one kind of CompilableUnit in Java is three words
followed by material in a matched pair of braces. The three words are the two
unalterable keywords "public class" followed by any name you choose for the class being
defined. The material in braces is any number of Declarations you would like to have.
Line 2 says that, in the class heading, you can insert just after the name of the class the
word "extends" followed by the name of a superclass from which it inherits.

Lines 4 and 5: You have seen two kinds of Declaration so far, described in these two
lines (you will see others later). The first line describes the structure of a main method
declaration as shown in Listing 1.5. The second line describes the structure of an
instance method declaration as shown in Listing 1.6; the choice of the MethodName is
arbitrary for an instance method.

The notation used here should be clearer now. With the special exception of the heading
of the main method:

A word that begins with a capital letter and ends in "Name" indicates an identifier; you
can have any name you choose for that category of declaration.

A word that begins with a capital letter and does not end in "Name" indicates a
language construct that is defined elsewhere.

Any other item means that item itself must appear there.

Lines 7 through 9: Here you have descriptions of the three kinds of statements you have
seen so far (there are many more). Examples are given at the right of each description.
Line 7 says a statement may declare a variable to have a particular VariableName and
be able to store a reference to a particular instance of the class named ClassName. Line
8 describes the general format of a statement that assigns a reference to a newly-created
instance of the class named ClassName to a variable named VariableName. Line 9
describes the general format of a statement that calls a method hamed MethodName
with an executor referred to by the variable named VariableName.

Exercise 1.15 Revise the dr awTwoFl ower s method to have the second flower not only
60 pixels to the right of the first but also 20 pixels higher than the first.

Exercise 1.16 Write a dr awSmal | FI ower method to be added to the FlowerMaker
class: The executor makes a tiny flower 10 pixels tall with no leaves.

Exercise 1.17 How many statements would the dr awTwoFl ower s method have if it did
exactly the same thing but did not call on any other methods outside the Turtle class (so
the statements from dr awFl ower and dr awLeaf are in dr awTwoF| ower s)?

Exercise 1.18 Write an application program that draws a target: a solid black circle
inside a solid blue circle inside a solid yellow circle inside a solid red circle.

Exercise 1.19* Revise the dr awFl ower method to have four leaves on alternating
sides, branching off at 10, 15, 20, and 25 pixels up the stem.

Exercise 1.20* Revise the dr awFl ower method to have six smaller circular yellow
petals distributed around the outside of the red center, overlapping it somewhat.
Exercise 1.21* Write an application program that draws five circles of different colors
and sizes at a variety of points on the drawing surface. Pause half a second between
circles.

Exercise 1.22* Describe all the kinds of situations you have seen within a class in which
you use parentheses.

Exercise 1.23** In Listing 1.5, which ones of the first twelve statements could be
swapped with the statement directly following it without changing the effect of the
program? List all of them that can be swapped.

Note: Double-starred exercises are the hardest ones. The answers are not in the
back.

1-17 Java Au Naturel by William C. Jones 1-17

1.5 Compiling And Running An Application Program

This section goes into the technical details of writing, compiling, and running a program.
First, make a folder on your hard disk for these Turtle programs and others you might
use. Then copy all the files from this book's website or CD-ROM disk that end in . j ava
into that one folder so you can use them.

The following describes what you do in one common situation, using a Windows
operating system and the free JDK you can download off the Internet. Your programming
environment may be different. Even if so, you should be aware of what is going on
behind the scenes, as described below.

You would try out ProgramOne as follows, assuming the program folder is ¢: \ cs1 and
the JDK has been properly installed with path settings:

1. Obtain the terminal window: Under Windows, click Start, then click Programs, then
click MS-DOS Prompt or Command Prompt or something equivalent. You should
see a terminal window with probably the C: \ wi ndows> prompt.

2. Switch to the program folder: Type the command cd C:\ cs1 inthe terminal
window and press the Enter key. You should see the C:\ cs1> prompt. If the
programs from the book are in this folder, one of them is in a file named
Turtl e.j ava and another is in a file named Pr ogr anmOne. j ava.

3. Compile Turtle: Type javac Turtle.java and press the Enter key. You should

see the C:\csl1> prompt reappear after a short wait. This indicates the compiler

has translated Turtle.java into Turtle. cl ass.

Compile ProgramOne: Same as Step 3 except use j avac ProgranOne. j ava.
5. Run that program: Type j ava Pr ogr anne and press the Enter key. You should
see the Turtle window appear. ProgramOne from Listing 1.1 will run, drawing a

capital letter 'H'".

E

Say you run GardenApp from Listing 1.5. The runtime system links in the FlowerMaker
class it mentions. This causes the runtime system to link in the Turtle class FlowerMaker
mentions, which causes it to link in the graphics classes that the Turtle class mentions.
This is done automatically for you if all Turtle-related classes are in the same disk folder.

Computer storage

A computer has two kinds of places to store data. One is RAM, which gives very fast
access to the data. However, when the computer is turned off, the data in RAM is lost.
And when a program runs in a window and that window is closed, the data in RAM is lost.
So RAM is called volatile memory.

The other kind of place to store data is permanent storage, such as the computer's hard
disk, a floppy disk, or a CD-ROM. Data stored in these places is not lost even when the
computer is turned off. However, the computer chip needs much more time to get data
from permanent storage than to get it from RAM. The components of the computer (chip,
RAM, disk, etc.) are hardware; the programs that control the computer are software.

Writing and running your own program

When you have worked out the logic for your own program, type it in a WordPad editor
window (or any word-processor program with the spell/grammar check turned off). Save
it in permanent storage, in the c:\ csl1 folder as a text file with the name

ProgramM ne. j ava (except change ProgramMine to whatever your class's name is).
You may need quotes around the name the first time you save it; otherwise the word
processor may add an extra word (e.g. ".txt") to the name that makes it uncompilable.

1-18 Java Au Naturel by William C. Jones 1-18

Once your program is saved on disk, open the terminal window alongside your editor
window. Compile your program using j avac ProgranM ne. j ava. If the compiler
detects errors, it prints descriptive messages in the terminal window. Correct them in the
editor window, click Save, then compile the program again in the terminal window. Some
general problems that can occur in compiling are as follows:

Getting more than 100 error messages generally means you saved the file with all of
the formatting codes that your word-processor uses for margins, fonts, etc. Go back
and this time save it right, as an ordinary text file.

"Bad command or file name" usually means your javac compiler is not properly
installed including the path.

"Can't read: X.java" usually means you have probably misspelled the name of the
file, in capitalization if nothing else. The DOS command di r p* will list all of the
files you have in the directory that start with the letter p, and similarly for other letters.
Use the di r command to see what the true file name is.

"Public class X must be defined in a file called X.java" means just what it says: The
name of the file must match exactly the name of the class, except for the ".java" part.

Source code versus object code

When you have a successful compile (no error message before the prompt reappears),
the compiler program translates the contents of your Pr ogranmM ne. j ava file, called
the source code, into a form called the object code, stored on disk in a file named
ProgramM ne. cl ass. You can then execute the object code in the file by entering

j ava ProgramM ne. This loads the program into RAM and begins its execution.

Downloading the JDK

If your computer system has not been set up properly for using Java, it may not
recognize the j avac or j ava command. You may download the JDK (which includes the
compiler) from http://java. sun. conl products. Then enter the following three
commands each time you open the terminal window for compiling or running (check your
disk folders to see what is the exact name of the folder containing the javac program; it
may not be jdk1.3.2):

DCOSKEY
set path=c:\jdkl. 3. 2\ bin; %at h%
set cl asspat h=.

The DOSKEY command makes it possible to use the up-arrow to get back commands you
entered in the terminal window earlier, which saves you some typing. If you know how to
do so safely, you could add those three commands to the end of your aut oexec. bat
file. Of course, if you use a commercial software development package instead of the
free JDK download, the process for writing, compiling, and running programs is different.
Some other free Java development packages may be available at one of

http://ww. bl uej.org, http://ww.realj.com

http://ww. net beans. org., or http://ww. eng. aubur n. edu/ gr asp.

Caution The most common compiler errors beginning Java programmers
make are: (a) capitalizing the "p" in publ i c; (b) not capitalizing the "s" in
String; (c) forgetting the pair of parentheses at the end of each message;
and (d) forgetting the semicolon at the end of each statement. The most
common non-compiler error is failure to make a backup copy of the source code files on
floppy disk every hour or so.

Exercise 1.24* Find on your computer the folder that contains the file named
j avac. exe, the Java compiler.

1-19 Java Au Naturel by William C. Jones 1-19

1.6 Sending Messages To Objects

It is essential you understand the concept of sending messages to objects. Think of it
this way: Each object is a person you can contact over the Internet. You can send email
messages to them and receive email answers from them.

When you declare Turtl e sam in a program, that creates space for an entry in
your email address book; samis the name of the entry space.

When you execute sam = new Turtl e() ina program, that puts the email
address of a particular person in the entry space with the name sam Now your
program can communicate with that person (or turtle).

When you execute sam nove(30, 50) in a program, that sends an email message
to the person whose address is stored with the name sam The message is a request
to the person to move from one place to another. The subject line is nove and the
body of the email is 30, 50, which describes how to move. The nove message
does not get a response from the recipient. It simply produces a change in the state
of the object to whom the message was sent. So do pai nt and swi t chTo.

When you execute pat . dr awFl ower () in a program, having previously executed
pat = new Fl ower Maker (), that sends a message to the person whose address
is stored with the name pat . The message is a request to the person to carry out the
commands given in the definition of the dr awF| ower method. Nothing is in the body
of the email. Only a FlowerMaker can understand this message; the compiler will not
let you send it to a plain uneducated Turtle such as sam

When you put bill = sam in a program, having previously declared Turtl e

bi | | , that copies the address in saminto the entry space named bi I | . Then sam
and bi | I contain the same address, so they refer to the same object. If you send a
message to sanis object, you are perforce sending a message to bi | | 's object, and
vice versa. We will not have occasion to do this for Turtle objects, but it is quite
useful for some other kinds of objects you will see later.

To: samuel@shiloh.org
Subj move
. {0 O
sam | samuel@shiloh.org { 45,300)
address book email message Samuel

Figure 1.6 Sending an email message to a person

Remember, this is all just a metaphor. Technically, the runtime system creates space for
all of a method's variables when the method begins execution.

1-20 Java Au Naturel by William C. Jones 1-20

Key Point: An object variable contains the address of an object, not the object itself.
Putting j ava. sun. com in your address book is clearly not the same as putting the
entire Sun Microsystems company itself in your address book.

Order of execution

When method X sends a message to an object O, X suspends all operations until O
notifies X it is finished doing everything the message asked it to do. Specifically:

X passes control of the execution of the program to O at the time the message is
sent.

does whatever it is supposed to do; X is doing nothing at this point, just waiting.
returns control of execution back to X when O is finished.

X executes the next operation after the messaging operation.

For instance, the message fl ori st. drawlwoFl ower s() in Listing 1.5 means the
main method passes control of execution to f | or i st and waits patiently until f | ori st
has drawn the two flowers. The main method does not send its next message,
florist.sleep(300), until after fl ori st has drawn the two flowers and returned
control to the main method.

If it were not pedagogically unsound to cascade metaphors, we would say you could think
of it this way: X calls O up on the telephone and asks O to do something; O puts X on
hold while he does it; O takes X off hold to report he has done it; X hangs up.

Variables versus values

There is a sharp difference between a variable and the value stored in it. You can have a
variable refer to two different objects at different times, or you can have two different
variables refer to the same object at the same time. This is illustrated by the following
sequence of statements (although we normally try to avoid having two different variables
refer to the same object within the same method):

Turtle pat;
pat = new Turtle(); /| pat refers to Turtle object #1
pat . move (90, 50); /1 that object is now north of the center

Turtle chris;

chris = pat; /' 2 variables refer to Turtle object #1
chris.nmove (90, 50); /| that object is now northwest of the center
pat = new Turtle(); /1 pat refers to a different Turtle object #2
pat . move (90, 50); /' Turtle object #2 is now north of the center

Exercise 1.25** Explain in your own words the difference between an object and a
reference to the object.

1-21 Java Au Naturel by William C. Jones 1-21

1.7 Three Application Programs Using Other Kinds Of Objects

Future chapters present objects that are more complex to work with than Turtles.
Several applications involving them are briefly described here so you can see how other
kinds of objects are used. You should be able to get the general idea of what they do,
although the details will have to wait until later chapters.

Evaluating the stock market

Suppose some investors want to know the range of possible outcomes if they invest in
the stock market. That is, they are too smart to just bet on the average performance over
the past few decades; they want to know reasonable estimates of the best and the worst
possible outcomes for their investments over the next twenty years or so.

Listing 1.7 is an application program to model the financial markets and simulate their
behavior over a period of twenty years. It is a slight variant of software you will learn to
develop in Chapter Ten. The first statement declares an object variable named weal t h
for a portfolio of investments, a combination of stocks and bonds. The second statement
creates a model of the portfolio and makes weal t h refer to that model. The third
statement prints out a description of the various mutual funds the portfolio is invested in.

Listing 1.7 An application program using a BuyAndHoldPortfolio object

public class InvestFor20

public static void main (String[] args)

{ BuyAndHol dPortfolio wealth; /1
weal th = new BuyAndHol dPortfolio(); /[l 2
weal t h. descri bel nvest nent Choi ces() ; /1 3
weal t h. wai t For Years (20); /] 4
weal t h. di spl ayCur rent Val ues() ; /15

|

The fourth statement simulates the action of the financial markets every day for the next
twenty years and keeps track of the changes in the values of the portfolio. The last
statement displays the results at the end of the twenty years.

You could run this program many times and write down the highest and lowest outcomes
obtained. Or the program itself can be revised to run 100 simulations and then print out
the lowest and highest end results obtained. (Note: You cannot actually run the three
programs in this section until after you study the later chapters, because you do not have
the object classes the programs need).

The investment program has the same structure as a Turtle program: You declare an
object variable (samor weal t h), have it refer to a newly-created object, then send the
object whatever messages will accomplish the task to be performed by the program.

Combining two files into one

Suppose you have two separate files on a hard disk that contain retail sales information
from two different cash registers. You need to combine them for further computer
processing. Specifically, you need an application program that combines two files on the
hard disk into one file so that all the lines from the first file (hamed "firstData.txt") are

1-22 Java Au Naturel by William C. Jones 1-22

followed by all the lines from the second file (named "secondData.txt") in a new file
named "combined.txt".

Listing 1.8 is an application program to do just that. You will learn how to write such
programs in Chapter Twelve. The first two statements declare an object variable of the
IO class, named i nput Fi | e, and have it refer to a representation of the physical file
"firstData.txt". The IO class is built from Sun's standard library classes for disk files.

The next two statements declare an object variable of the FileOutputStream class,
named out put Fi | e, and have it refer to a representation of the physical combined file
(replacing any existing file on the hard disk of the same name, creating a new one if
needed). The FileOutputStream class is one of Sun's standard library classes that
comes with the free download of JDK.

Listing 1.8 An application program using three disk file objects

public class Conbi ner

public static void main (String[] args)
t hrows Fi | eNot FoundExcepti on /] explained in Ch 12

{ 10 inputFile; /1
inputFile = new 1O ("firstData.txt"); /[l 2
Fi | eCQut put St r eam out put Fi | e; /1 3
outputFile = new Fil eQut put Stream ("conbi ned. txt"); /] 4
i nput Fi |l e. copyTo (outputFile); /15
inputFile = new | O ("secondData.txt"); /1 6
i nput Fi |l e. copyTo (outputFile); /7
out put Fil e. cl ose(); /1 8

|

The effect of the last sequence of four statements is as follows:

1. Statement #5 sends a message to the i nput Fi | e object to print all of its information
to the file represented by the out put Fi | e object.

2. Statement #6 changes the value of the i nput Fi | e variable so it refers to a
representation of a completely different disk file named "secondData.txt".

3. Statement #7 sends the new object a message to print all of its information to the file
represented by the out put Fi | e object; this information is added after the
information from "firstData.txt".

4. Statement #8 sends the combined file referred to by out put Fi | e the message that
it has been completed, which causes some clean-up activities.

The quotes around “firstData.txt" mean this is the name of a physical file on the hard disk.
The runtime system uses the name to find an existing file. If you did not have the quotes,
the compiler would interpret it as the name of a variable. That would not be acceptable,
because you have not declared the variable or given it a value.

This program would be more useful if you could use it for any three files, not just the ones
named. That could be done withthe String[] args part: You would put something
involving ar gs in place of the three names in quotes, then run the program using

java Conbiner firstData.txt secondData.txt comnbined.txt

1-23 Java Au Naturel by William C. Jones 1-23

(If it were not far too early to introduce this detail now, we would tell you to just put
ar gs[0] in place of "firstData.txt", put ar gs[1] in place of "secondData.txt", and put
ar gs[2] in place of "combined.txt" within the main method.)

Finding the highest-paid worker

Suppose a company stores information about all the current employees in a hard-disk file
named "workers.txt". The number of employees in the company fluctuates weekly, but it
is not expected to exceed 2800 or so. The company needs an application program that
prints out the name of the highest-paid employee and what he/she is paid.

Listing 1.9 is an application program to do just that. Chapter Seven shows how to define
a WorkerList object, which is a list of all the workers in the company, and how to write this
program. The first two statements create a WorkerList object that can store up to 3,000
employees, each represented as a separate Worker object, and have conpany refer to
the WorkerList object. The third statement sends a message to the conpany object to
read in the information about the employees from the hard-disk file named "workers.txt".

Listing 1.9 An application program using WorkerList and Worker objects

public cl ass Fi ndH ghest

public static void main (String[] args)

{ WorkerlList conpany; /1
conpany = new WorkerList (3000); /[l 2
conpany. addFronftil e ("workers.txt"); /1 3
Wor ker hi ghest Pai d; /] 4
hi ghest Pai d = conpany. get Wr ker Wt hHi ghest Pay() ; /15
System out . println (highestPaid); /1 6

|

The fourth and fifth statements ask the object named conpany to find the Worker object
representing the employee with the highest pay and then store the object in a Worker
variable named hi ghest Pai d. The last statement sends a message to an object to
print a line in the terminal window describing the employee.

The object that prints a line is named out . Note that the program does not declare that
object variable. That is because another class named System already declares the
object variable named out and assigns it a value. Your class can use the variable as
long as it makes it clear to the compiler where to find it. The compiler will not look for
such variables outside of the class you are in unless you explicitly tell it to, by giving the
name of the other class before the name of the variable.

A prototype application using only Sun library classes

Sometimes you want to test out part of a software system before you have the whole
system completed. An executable program that does only a small part of what the final
product is intended to do is a prototype. Many of its methods may be incomplete. A
common technique is to have such methods simply print a message to the terminal
window that it was called. Consider the following statement:

Systemout.println ("whatever");

1-24 Java Au Naturel by William C. Jones 1-24

It prints whatever is within the quotes to the terminal window. Using this statement, you
can make a BuyAndHoldPortfolio class for the InvestFor20 application that allows you to
run the program. This class is in Listing 1.10. It, together with the InvestFor20 class in
Listing 1.7, forms a complete working program without relying on anything other than the
Sun standard library. But it does not do much. By the time you complete Chapter Four,
you will know how to write complete programs that do much more interesting tasks.

Listing 1.10 A prototype of the BuyAndHoldPortfolio class of objects

public class BuyAndHol dPortfolio

{
public void descri bel nvest nent Choi ces()
{ Systemout.println ("You have 5 ways to invest.");
|
public void waitForYears (int years)
{ Systemout.println ("Wait for your noney to grow. ");
|
public void displayCurrent Val ues()
{ Systemout.println ("You now have | ots of noney.");
|

}

Objects

You have seen four different concrete examples of object-oriented programming so far.
Now you can look at what is common to them and to other similar situations.

Object-oriented software does its job primarily by sending messages to various objects.
These messages call on the services provided by the objects. A class definition says
what services an object of the class provides, defined as methods.

For the Turtle software, the objects represent the point of a pen that draws figures in
colors. For the InvestFor20 software, the objects represent mutual funds and the
portfolio as a whole. For the Combiner software, the objects represent physical files on a
hard disk. For the WorkerList software, the objects represent the company as a whole
and the individual workers.

The effect of a given message on different instances from the same class can vary. This
is because each object stores individual information about itself. A Turtle object stores its
own heading and coordinates. A Worker object stores its name, birth date, and week's

pay. The values of the stored data affect what the object does in response to a message.

An analogy with CEOs

In olden times (thirty years ago), programmers developed software in a way that kept all
of the information stored out in the open. A programmer had to keep track of perhaps
hundreds of variables, not just a few Turtle or WorkerList variables. This was often
overwhelming, and it limited the size and complexity of software that could be developed
in a reasonable time. It is analogous to what happens in a private company run by a
hands-on owner. When the owner supervises most of the details of everything that gets
done, the company cannot grow past a certain modest size.

For object-oriented programming, the programmer creates objects that store the
information. These objects supply or modify the information when requested via method
calls. This gives the programmer much less to keep track of, and so larger and more

1-25 Java Au Naturel by William C. Jones 1-25

complicated software can be developed efficiently. Leaving most of the work to individual
objects is a classic use of the principle of delegation of responsibility.

Such a programmer acts more like a CEO of a large company than a hands-on owner of
a small company. For instance, the CEO may have an assistant do a substantial part of
the job and report the result, which the CEO passes on to two other assistants who
between them complete the job. The CEO is there only to determine the overall structure
of the solution to a problem and make sure that individual subtasks are given to
assistants who can do the task well.

A CEO who needs a task done looks for an employee with the right qualifications.
Similarly, when you design larger programs, you will look for classes of objects you
already have in the Sun standard library or in your own library that can do the task, i.e.,
you try to reuse software. The CEO who has no suitable employee for a given task
sees if one can easily be trained in the needed skills. Similarly, you may find that you
need to add new methods to existing classes of objects (i.e., subclass them) to get your
tasks done. The CEO who has no employee who can be retrained goes out and hires a
new one who can do the job. Similarly, you will often find you need to create new classes
of objects to perform the tasks that a piece of software needs to do.

Models and simulation

Objects in software typically provide a model of a portion of the real world. For instance,
a Turtle object is a model of a hand holding a pen or crayon. Software for operating a
bank may have many Account objects, SafeDepositBox objects, Teller objects, and
Customer objects that model part of the bank operations. And software for finding
efficient ways of manufacturing furniture may have many WoodShaper objects,
Assembler objects, and Finisher objects that model people with specific tasks.

Execution of the software typically provides a simulation of reality. Simulation is defined
in Merriam Webster's Collegiate Dictionary as: "a. the imitative representation of the
functioning of one system or process by means of the functioning of another; b.
examination of a problem often not subject to direct experimentation by means of a
simulating device." That device would be the computer, or more precisely, a program
running on the computer.

The simulation may be profitable because it can be done by the computer hundreds of
times faster than in reality, or because it avoids the destruction of material and the use of
manpower that reality would require. The computer does not shape real wood into
furniture, only virtual wood (objects) into virtual furniture (more objects).

An important way in which computer models and simulations affect us all is through the
use of software to model the weather around the world and simulate its development over
the next few days. This software is what makes your daily weather report possible so
you can plan your activities in the near future. It also provides fairly reliable predictions of
severe weather that can kill people and damage property if no one is prepared for it. The
objects used are Storm objects, Cloud objects, JetStream objects, and the like.

In general, an application program often works with a model of a real situation. A model
contains various elements that represent parts of the model. These elements (objects)
can be grouped into classes according to the kind of behavior they exhibit -- objects with
the same kinds of behaviors are grouped into the same class. For instance, Turtles draw
pictures; BuyAndHoldPortfolios of stocks make money; FileOutputStreams store textual
data; and Workers provide hours of work in return for their week'’s pay.

1-26 Java Au Naturel by William C. Jones 1-26

Exercise 1.26 Revise Listing 1.7 to have it print the status of the portfolio at the end of
each five-year period in the overall twenty-year period.

Exercise 1.27 Revise Listing 1.9 to also print the information for the worker with the
lowest pay. Assume the existence of one additional obvious method.

Exercise 1.28* Revise Listing 1.8 to have it combine four files into a single file.
Exercise 1.29* Think of another real-life problem a computer program could be used to
solve. Write an application program to solve it on the level illustrated here (that is, with all
the messy details left for the objects to carry out).

Exercise 1.30* Describe a different situation in which you know computer software
models and simulates something. What does it model, what does it simulate, and what
are the elements in the situation?

1.8 Program Development: Analysis, Logic Design, Object Design,
Refinement, Coding

When you develop software, you need a plan. You cannot just read the statement of a
problem and start coding. This section outlines a process for developing software that
has been found to be very effective. If you use it, you will take somewhat longer to get to
where you have Java code that appears to solve the problem, but you will take much less
time to get to where you have Java code that really does solve the problem.

When you worked out some of the Turtle problems, surely you found that it was much
easier to come up with the right answer if you first drew a picture of what you were trying
to accomplish, putting in pixel measurements where needed. That was part of your plan.
Other programming problems are not so strongly graphics-based, so you will generally
need to have most of the plan in writing rather than in pictures.

The process presented here has five stages: Analysis, Logic Design, Object Design,
Refinement, and then Coding. The presentation in this section must of necessity be
rather general, since you have not seen much in the way of language features yet. You
will see applications of this process to problems in Chapter Two and Chapter Three. Late
in Chapter Three, we will go over these points more concretely, once you have seen Java
language features that let you make choices and perform actions repeatedly. And we will
discuss them further in Chapter Eight after you have seen larger examples.

Analysis

Before you can make a plan, you have to analyze the problem to see exactly what is
required. Drawing a picture is often helpful. Thinking of many different situations in
which the software will have to perform helps you decide how you will react to the
situation. The statement of a problem is usually incomplete, so you cannot develop a
solution until you have the answers to some questions about it. Your objective is to have
a clear, complete, and unambiguous specification of the problem before you start working
on the solution to the problem.

Choose some test data that the software will have to react to and decide what it should
do for that particular situation. Repeat this several times with different data. This helps
you more precisely determine what you are supposed to do. Make a record of the data
and the expected result so you can test your program when you complete it. The time to
develop a test plan is during the analysis and design stages, not after the coding stage.

1-27 Java Au Naturel by William C. Jones 1-27

Logic Design

Decide the order in which tasks will be done. As you do, think of the helpers you would
like to have carry out those tasks for you, to make your job easy. For instance, the
developer of the program in Listing 1.9 might have worked it out as follows:

"l need a records-clerk helper that can store information about thousands of workers. |
will ask this records-clerk helper to get information about all the workers in the company
from the company records. Then | will ask this records-clerk helper to produce a worker
helper who knows who is the highest paid of all. | will then ask that worker helper to tell
me the highest-paid worker's name and pay."

The process you develop should be written out entirely in English in this stage (or
whatever natural language you prefer). Do not code anything in Java yet.

Object Design

Decide on a name for each of the types of helpers (known as objects in Java) you need.
Then decide how you will phrase the messages you will send to them. In our example of
Listing 1.9, the developer decided (a) to name the records-clerk helper a WorkerList,

(b) to name the message that asks the records-clerk helper to get information about the
workers addFr onti | e, and (c) to send along with that message the file name, because
the records-clerk helper needs the file name to perform the task.

Refinement

Study the logic and the objects you have developed so far and make sure that everything
is correct. Run through several sets of test data in your mind or on paper to see how the
logic and the objects handle it. Make any modifications you see are needed. Do not go
further until you are quite sure that the logic is correct.

Coding

Translate your design to Java (this is called coding the design). Since this is your first
course in software development, you should use the following trick: Only code what you
are fairly sure is not going to produce more than three or four errors, if that. If a method
requires more than one or two statements, you can leave the method body empty for now
or just have it print a simple message, as shown in Listing 1.10. Compile your partially-
done program before adding more. That way, when errors occur, you will find it much
easier to figure them out and correct them.

For a program of some complexity, you are not done yet. Your design calls on objects to
perform subtasks to get the overall task done, but you need to develop the logic for those
subtasks. That usually requires that you repeat the process just described, but this time
for one subtask at a time. And you will have to repeat the process on subtasks of the
subtasks if they are at all complex.

The waterfall model

Just because you are very careful in the steps so far, you cannot be sure that your
program is correct. You need to test the program with the test data you developed during
analysis and design. This usually leads to changes in coding, sometimes also to
changes in the analysis and design. When the program appears correct, you can
distribute it. Thereafter, the program will need maintenance as the way in which it is used
changes or more faults are found.

The classic waterfall model emphasizes these steps: analysis, design, coding, testing,
and maintenance. This book concentrates primarily on the first three.

1-28 Java Au Naturel by William C. Jones 1-28

1.9 Placing Java In History

Now that you have some idea of what Java is, you should know something about its
historical background. Each computer chip has a set of numeric codes it understands
directly, called machine code. For instance, 31 65 31 83 31 75 might mean to print the
word ASK. Actually, machine code is in binary notation (base 2) rather than decimal
notation (base 10), so the instruction would be 11111 1000001 11111 1010011 11111
1001011. Reminder: Base 2 uses powers of 2, e.g., 1111 means 2° + 22 + 21 + 1,
which is 8+4+2+1 = 15; and 100101 means 2° + 22 + 1, which is 32+4+1 = 37.

Programming in these machine codes is prohibitively difficult. So assembler languages
were invented, along with programs to translate the assembly instructions into the chip's
machine code. In some assembler language, PRNT " A' PRNT 'S" PRNT 'K might
be how you tell the chip to print the word ASK. This matches up one-for-one with the
binary machine code instructions, but it is easier to remember and use. But still, each
kind of chip has its own assembler language. If you want to write a program that runs on
five different kinds of chips, you have to write it five times in five different assembler
languages. And the language is still quite tedious.

High-level programming languages

High-level languages were invented to let you give a command suchas wite(' ASK')
to print the word ASK for any computer chip. FORTRAN (for science and engineering)
and COBOL (for business) were developed in the late 1950s. BASIC (for students), Lisp
(for artificial intelligence), and C (for operating systems) were developed in the 1960s and
early 1970s. Pascal was developed in the 1970s and became the dominant language for
teaching computer science in colleges and universities.

If you want to write a program that runs on five different chips, you just need to write it
once if you use Pascal. Then you have it translated (compiled) to each chip's own
machine code. You can do this because each of the chips has a compiler written in its
own machine code that reads in a source code file written in Pascal and compiles it. The
five compilers are written in different languages; but since the compilers have already
been developed, additional programs can be written in just the one language Pascal.

Unfortunately, Niklaus Wirth, who invented Pascal, named its successor Modula instead
of Pascal++, which is perhaps the primary reason Pascal lost its dominance in university
instruction (sometimes marketing is everything). Ada (for government contracts) and
C++ (a successor of C, for object-oriented programming) and others were developed in
the 1980s. Then along came Java in the 1990s.

Java

Java is a high-level programming language that was originally developed to control
electronic consumer appliances, such as CD organizers and home security systems. It is
a simpler cleaner language than most other widely-used high-level languages. A key
advantage is that it has only one compiled form regardless of the computer chip on which
it is used. This is platform independence. The compiled form is called bytecode, and it
runs on a Java Virtual Machine (JVM) (which is an "abstract design" of a machine,
according to Sun Microsystems).

Sun Microsystems and others have created simulators of the JVM for all the common
kinds of computer chips. A JVM simulator, called an interpreter, is written in the chip's
native machine code. It takes one unit of bytecode at a time and executes it, then goes
on to the next, etc. This is slower than executing the compiled form of e.g. Pascal, but
chips today are fast enough that speed is not a problem in most cases.

1-29 Java Au Naturel by William C. Jones 1-29

The big advantage is that a program in compiled form (a . cl ass file) can be retrieved
over the internet and executed immediately. This is better than having to obtain the
source code (as with Pascal) and have it compiled on your own machine before you can
use it. Browsers have JVM simulators built in so they can execute applets on web pages.
And security measures in the browsers prevent applets from harming your computer files.
These security measures are not possible with programming languages such as Pascal.

Exercise 1.31 Convert to decimal notation: 1100 and 10110 and 101010.
Exercise 1.32 Convert to decimal notation: 0011,0001,0110 and 1000,0000,1000,1000.

1.10 Fractal Turtles (*Enrichment)

Lest you think that such a simple concept as the Turtle only allows simple-minded
drawings, the program in Listing 1.11 illustrates the power of Turtles. The upper part
contains the application program and the lower part contains the class of Turtle objects
the program uses. The application begins by creating a FractalTurtle object, which
knows how to draw a fractal. First it backs south by 240 pixels so as to have plenty of
room to draw a tall tree. Then it draws a tree with a trunk of length 80 pixels.

This is a very special tree, called a Pythagorean tree, which is one of many fractal
images Turtles can make. The directions for making the tree are in the dr awTr ee
method. It uses four language features you have not seen before (which is why this is an
optional section). But you can probably make sense of the following step-by-step
description.

Listing 1.11 A program that draws a fractal image

public class Fractal App
{

/! Draw a Pythogorean tree.

public static void main (String[] args)
{ Fractal Turtle pythagoras;

pyt hagoras = new Fractal Turtl e();

pyt hagor as. nove (90, -240);

pyt hagor as. dr awTr ee (80);
|

}
| | #HBHHHBHHHBHHH B H B H B H A H A H A H A H A H A H A H AR H A

public class Fractal Turtle extends Turtle

{
public void drawlree (doubl e trunk)
{ paint (0, trunk); /[l go to top of trunk
nmove (30, 0); [/l face to the left
if (trunk > 1)
drawlree (trunk * 0.7); /1 make branches on the left
nove (-60, 0); /[l face to the right
if (trunk > 1)
drawlree (trunk * 0.7); // make branches on the right
move (30, -trunk); /1l go to bottom of trunk
|

1-30 Java Au Naturel by William C. Jones 1-30

How to draw a tree fractally

To draw a tree with a trunk of a given length, the Turtle first paints a straight line t r unk
pixels long. Second, it draws the branches that go off to the left. Specifically, it turns 30
degrees to its left and then draws a tree whose size is 70% of the tree it is in the midst of
drawing. That is, the branches it is currently drawing are shaped like a somewhat smaller
version of the tree it is currently drawing. This is indicated in the dr awTr ee logic by
multiplying the value of t r unk by the number 0.7. Note that it is permissible for
distances to be expressed as decimal numbers in the Turtle methods; the word doubl e
in the parentheses signals that the value to be used is a decimal. Note also that an
asterisk is a multiplication sign.

After the Turtle finishes drawing the branches on the left side of the trunk, it swings back
to its right 60 degrees, so it is now facing 30 degrees to the right of the trunk line. Then it
draws the branches that go off to the right, which look like a smaller version of the tree it
is drawing (70% of the size). Finally, the Turtle moves backward so that it is at the
bottom of the trunk, where it was initially, and facing in the same direction it was initially.

The process just described
goes on forever, which is too
long for a computer program,
even with a very fast chip. So
the Turtle cheats a little. As
soon as the tree it is drawing is
so small that its trunk is less
than a single pixel in length, the
Turtle does not draw any of that
tree's branches -- it figures you
cannot see them on the screen
anyway. Figure 1.7 shows the
result. Itis in the category of
fractals which are primarily
made up of smaller versions of
themselves. The choices of 30
degrees and 70% are arbitrary,
chosen after some
experimentation to find a nice
balance. You could try making
different choices for the numbers. Figure 1.7 Result of executing FractalApp

Exercise 1.33** In the execution of the FractalApp program, how many points are there
where the Turtle draws the trunk of a tiny tree that has no branches?

1.11 Review Of Chapter One

Listing 1.3 and Listing 1.4 illustrate all Java language features introduced in this chapter
that you need to remember. http://java. sun. comi docs has much useful reference
material and ht t p: / / j ava. sun. com pr oduct s has the free compiler. Section 1.5
has details on using this free compiler.

About the Java language:

» SoneC ass sam creates a variable of type SomeClass and declares samas the
name of that variable. The phrase SoneC ass sam is a variable declaration. For
instance, Turt | e sue declares a variable for storing a Turtle object.

1-31 Java Au Naturel by William C. Jones 1-31

» Execution of a phrase of the form sam = new SoneC ass() creates aninstance
(object) of SomeClass and puts a reference to that object in sam

» Anything on a line after // is a comment; the compiler ignores it.

» A class named SomeCilass is to be stored in a plain text file (the source code)
named Soned ass. j ava. The compiler translates this file into a form the runtime
system can use (the object code), stored in a file named SomeC ass. cl ass. The
object code is expressed in bytecode which runs on a Java Virtual Machine (JVM).

» Ifaclassis an application program, i.e., with a method whose heading is publ i c
static void main (String[] args),thenthat main method can be executed
by the runtime system with a command in the terminal window of the form j ava
Somed ass. An object class (with instance methods and no main method) cannot
be executed this way.

» When a method call has a variable before the dot (period), as in
sam nove(0, 10), the variable refers to the executor of that call. If the statements
within some method M include a method call whose executor is not stated, then the
executor of the method called is by default M's executor.

» A class defined with the phrase ext ends Turtl e in the heading is a subclass of
the Turtle class, and Turtle is its superclass (and similarly for other classes besides
Turtle). The subclass inherits each public method defined in the superclass, i.e.,
each instance of the subclass can use those methods as if they were defined in the
subclass.

» See Figure 1.8 and Figure 1.9 for the remaining new language features. In Figure
1.8, Argunent Li st stands for whatever values are required by the particular
method, with commas separating them if you have more than one of them. Phrases
in italics indicate optional parts -- sometimes they are present and sometimes not. A
Decl ar ati onG oup is zero or more declarations, and a St at enent G oup is zero
or more statements.

Cl assNane Vari abl eNane; statement that creates a reference
variable

Vari abl eNane = new C assNane(); statement that creates an object and
assigns its reference to a reference
variable

Var i abl eNanme. Met hodNane statement that sends a message to the

(ArgumentList); object referred to by the variable named

Met hodName (ArgunentList); statement that sends a message to the

executor of the method declaration it is in

Figure 1.8 Statements introduced in Chapter One

public class C assNane declaration of a class;
extends Super d assNane "extends SuperClassName"

{ DeclarationG oup is optional

}

public static void main (String[] args) declaration of a main

{ Statenent&Goup method of an application

}

public void MethodNane() declaration of an instance

{ StatenentGoup method that is called as a

} stand-alone statement

Figure 1.9 Declarations introduced in Chapter One

1-32 Java Au Naturel by William C. Jones 1-32

Other vocabulary to remember:

>

>

The programs you run and all the classes they use are software. The physical
components of the computer (chip, RAM, disk, monitor, etc.) are hardware.

The method heading is the first part of the method up through the parentheses; the
method body is the following matched pair of braces { } and its contents. The
method body is a sequence of statements, most of which are a command followed
by a semicolon.

The absence of stati c inthe method heading signals you must have an executor
in order to call the method. Such a method is an instance method.

A declaration of a variable name declares the type of value to be stored there. Itis
usually followed directly by a definition of the variable. You may define (give a
value to) a variable many times but declare its name only once.

The heading of a method declares its name to be the name of the method; the body
defines what the method does. That is, the heading says how it is used and the
body says what happens when you use it.

The Sun standard library comes with with the installation of Java that you obtain
from Sun Microsystems Inc. Itincludes the String class and hundreds of others.
The keywords that occur in this chapter are all the words in Figure 1.8 and Figure
1.9 that begin with a small letter, except ar gs is not. All non-keywords in a Java
program that begin with a letter are identifiers (names) of classes, methods, or
variables, except for three which you will see later (t r ue, f al se, and nul |).

When the runtime system executes a program, it links in all other class definitions
required by the program, either directly or indirectly.

A prototype is an executable program that does only part of what the final product is
intended to do. The purpose of creating a prototype is to test parts of the system.

About the nine Turtle methods (developed for this book):

>

new Turtl e() creates a Turtle object in the center of a drawing surface 760 pixels
wide and 600 tall. The Turtle initially faces east and carries a black paintbrush. In
the following, samis a Turtle variable to which you have assigned a Turtle object.
sam pai nt (angl e, dist) tells samto turn counterclockwise by angl e degrees
and then go forward by di st pixels, leaving a trail of the current drawing color.

sam nove(angl e, dist) tells samto turn counterclockwise by angl e degrees
and then go forward by di st pixels, without leaving any marks.

sam swi ngAr ound(di st) tells samto draw a circle of radius di st pixels with
samat the center.

samfill Grcle(dist) tellssamto draw a circle of radius di st pixels with sam
at the center, and fill its interior with the current drawing color.

sam fill Box(w dth, height) tellssamto draw a rectangle wi dt h pixels wide
and hei ght pixels tall, with samat the center, and fill its interior with the current
drawing color.

sam swi t chTo(col) tells samto change the current drawing color to col , which
can be any of BLACK, GRAY, BLUE, GREEN, RED, YELLOW, ORANGE, PINK,
MAGENTA, and WHITE. Put "Turtle." in front of the name of a color you use in a
program, unless you use it in a subclass of the Turtle class.

sam say("what ever") tells samto print whatever is within the quotes.

sam sl eep(m I 1i) tells samto suspend action for m I |i milliseconds.

1-33 Java Au Naturel by William C. Jones

Answers to Selected Exercises

11 sue.paint (90, 60);
sue.paint (90, 120);
sue.paint (90, 60);
sue.paint (90, 120);
1.2 sam.paint (90, 12);
sam.move (180, 2);
sam.paint (135, 3);
sam.paint (-45, 6);
1.3 public class LetterB
{ public static void main (String[] args)
{ Turtle cat;
cat = new Turtle();
cat.paint (0, 6); // the top of the rounded part of the 'b’
cat.paint (-90, 6);
cat.paint (-90, 6); // the bottom of the rounded part of the 'b’
cat.paint (-90, 12);
}

1.4 public class LetterM
{ public static void main (String[] args)

{ Turtle cat;
cat = new Turtle();
cat.paint (90, 6); // the left side of the 'm’
cat.paint (-90, 4);
cat.paint (-90, 6); // the center part of the 'm’
cat.move (180, 6);
cat.paint (-90, 4);
cat.paint (-90, 6);

}

15 public class Hexagon
{ public static void main (String[] args)

{ Turtle cat;
cat = new Turtle();
cat.paint (60, 50);
cat.paint (60, 50);
cat.paint (60, 50);
cat.paint (60, 50);
cat.paint (60, 50);
cat.paint (60, 50);

}

1.8 public class SquaresinSquares
{ public static void main (String[] args)
{ SmartTurtle cat;
cat = new SmartTurtle();
cat.makeBigSquare ();
cat.move (0, 50); // this is arbitrary; anything over 40 would do
cat.makeBigSquare();
cat.move (90, 25);
cat.move (90, 25); // to upper-left corner of inner square
cat.makeSmallSquare();
cat.move (0, 50); // to upper-left corner of the other inner square
cat.makeSmallSquare();

}

}
1.9 public void goAndSquare()
{ move (90, 70);
makeSmallSquare();
}

Then replace each of the last three pairs of statements in Listing 1.4 by:
sue.goAndSquare();
1.10 public void drawHexagon()
{ paint (60, 30);
paint (60, 30);
paint (60, 30);
paint (60, 30);
paint (60, 30);
paint (60, 30);

1-33

1-34

1.11

1.15

1.16

1.17

1.18

1.26

1.27

1.31
1.32

Java Au Naturel by William C. Jones 1-34

public class ThreeHexagons
{ public static void main (String[] args)
{ SmartTurtle cat;
cat = new SmartTurtle();
cat.drawHexagon();
cat.move (120, 0);
cat.drawHexagon();
cat.move (120, 0);
cat.drawHexagon();
}
}
Put move (0, -20); right after the first drawFlower();.
Put move(0,20); right after the second drawFlower();.
public void drawSmallFlower()
{ paint (90, 7);
switchTo (RED);
fillCircle (3);
switchTo (BLACK);
move (180, 7);
}
First put the 8 statements of drawLeaf in drawFlower twice, so that it has
13+8+8 = 29 statements. So drawTwoFlowers will have 2+29+29 = 60 statements.
public class Target
{ public static void main (String[] args)
{ Turtle cat;
cat = new Turtle();
cat.switchTo (Turtle.RED);
cat.fillCircle (80); // the 80 and other numbers are arbitrary
cat.switchTo (Turtle. YELLOW);
cat.fillCircle (60);
cat.switchTo (Turtle.BLUE);
cat.fillCircle (40);
cat.switchTo (Turtle.BLACK);
cat.fillCircle (20);
}

Put the following eight statements in place of the last two statements of Listing 1.7:
wealth.waitForYears (5);

wealth.displayCurrentValues();

wealth.waitForYears (5);

wealth.displayCurrentValues();

wealth.waitForYears (5);

wealth.displayCurrentValues();

wealth.waitForYears (5);

wealth.displayCurrentValues();

Add the following three statements at the end of the main method:
Worker lowestPaid;

lowestPaid = company.getWorkerWithLowestPay();
System.out.printin (lowestPaid);

8+4=12 and 16+4+2=22 and 32+8+2=42.

3*256+1*16+6=790 and 8*16*256+8*16+8 = 32768+128+8 = 32904.

2-1 Java Au Naturel by William C. Jones 2-1

2 Conditionals and Boolean Methods

Overview

This chapter introduces the Vic software to control electronic components. Vics provide a
moderately realistic context in which you can learn about some new Java language
features. These features let you ask your objects questions and then decide, based on
the answers they give, what actions they should take.

Sections 2.1-2.2 describe basic Vic commands and review main methods and
subclassing.

Sections 2.3-2.5 present conditional statements.

Sections 2.6-2.8 discuss boolean operators, boolean variables, and methods that
return boolean values.

Sections 2.9-2.10 introduce additional useful topics including UML notation.

Some students like a more detailed preview of the language features they are about to
learn. If you are such a student, you will find it helpful to skim the review at the end of
each chapter before reading the chapter itself.

2.1 Using Vic Objects To Control Appliances

Your company sells a programmable machine that stores compact discs (CDs) and
moves them around when the operator pushes certain buttons. The machine uses a
computer chip to do this. Your job is to write the programs for this chip, using the Java
programming language.

The primary component of this machine has a mechanical arm and one sequence of
three or more slots for storing CDs (the higher-priced machines have more slots). At any
given time, some slots contain a CD and some do not. The mechanical arm is positioned
at one point in the sequence of slots, either right at a slot or just after all the slots.

Each programmable machine has one or more of these primary components. The
machine also has a place where extra CDs can be stored, called its stack of CDs. This
stack sometimes contains many CDs and sometimes contains none at all. When you put
a CD on the stack, and later put another CD on the stack, then the later one is on top.
That means that, the next time you take a CD off of the stack, you will get the later one,
not the one that is underneath it.

You can have one of these primary components perform one of four kinds of operations,
named t akeCD, noveOn, put CD, and backUp:

The t akeCD operation causes the mechanical arm to take a CD out of the slot at the
current position and place it on top of the stack. This does not change the arm's
position in the sequence. If there is no CD in the slot, the t akeCD operation has no
effect.

The noveOn operation moves the mechanical arm down from its current position in
the sequence of slots to the next position.

The put CD operation causes the mechanical arm to remove a CD from the top of the
stack and put it in the slot at the current position. This does not change the arm's
position in the sequence. If a CD is already in the slot, or if no CD is in the stack, the
put CD operation has no effect.

The backUp operation moves the mechanical arm up from its current position in the
sequence of slots to the position just before it.

2-2 Java Au Naturel by William C. Jones 2-2

The phrase Vi ¢ mac in a program declares nac as the name for a variable, a part of
the RAM's data area which can refer to a Vic object. The phrase nmac = new Vi c()
in a program creates the object and puts a reference to the object in the variable named
mac. Thereafter, a mention of mac in the program is an indirect mention of the object.
The object specifies the component's sequence of slots and current position.

Figure 2.1 shows how the status of the Vic object changes after each operation. The
stick figure indicates the position of the mechanical arm that shifts CDs. Initially, this
particular Vic object has a sequence of five slots, with CDs in the first and last slots, as
well as two CDs in the stack. The initial arrangement of CDs is whatever was left in the
slots and stack when the machine was last turned off.

mac = new Vic()

creates the internal description for the Vic object, positioned at the beginning
of the sequence of slots.

mac
after
COtd

mac = nesw Yicl)

CO#3 CO#1 e e e CO#2 | END
stack

mac. t akeCD()

asks the Vic to take a CD out of its current slot and put it on top of the stack
of CDs for the machine.

cmﬁ\ % mas
after mactakeCDr) |CO#4

o3 \" ------------------ Chog ErMD
stack

mac. moveOn()

asks the Vic to move to the next slot after the one at its current position.

O 3 E mac
after mac.moveon) [CO#4
R cO#2 | END
stack
mac. put CIX()

asks the Vic to put a CD in its current slot. This CD comes from the top of
the stack of CDs.

/—\% mac
after mac. putcChD) Ch#4

A
CO#3 | - CO#1 - CD#2 EMD

mac. backUp()

asks the Vic to back up to the slot just before the one at its current position.

mac
T
after mac backUpi) Ch#4
CO#3| | - Co#l - CD#2 | END
stack

Figure 2.1 The meaning of the four basic Vic commands

2-3 Java Au Naturel by William C. Jones 2-3

Objects in Vic programs

When a program that operates the Programmable CD Organizer machine begins its
work, it creates an internal description of each of these primary components and puts that
data in RAM. This internal description is an object. An object is a virtual mechanism
when it is a computer model of a physical mechanism. Since this particular object stores
Virtual CDs, we can call it a Vic for short.

The four basic Vic operations of put CD, t akeCD, mnoveOn, and backUp are what actually
move the springs, gears, and grippers in the physical machine. You write a program to
perform a complex task by performing these simple physical actions in an appropriate
sequence. When nac refers to some Vic, mac.takeCD(), mac. noveOn(),

mac. put CD(), and nmac. backUp() are the ways you express these actions in a Java
program.

An application program

Suppose you want a Vic object to take a CD from its third slot and put the CD in its
second slot. You could have the computer chip execute the application program in
Listing 2.1. The comments at the end of certain lines (signaled by the // symbol)
explain what is happening. The class heading and the method heading (the two
boldfaced lines) plus the corresponding two pairs of braces are what this book always
uses for application programs, except that the name MoveOne is chosen to reflect what
the specific program does.

Listing 2.1 An application program using one Vic object

public class MoveOne
// Take a CD fromthe third slot; put it in the second slot.
public static void main (String[] args)

{ Vic sue; /1
sue = new Vic(); [/ 2

sue. noveOn() ; // 3 mnove to the second sl ot

sue. noveOn() ; /!l 4 nove to the third sl ot

sue. t akeCIX) ; /[l 5 take CD fromslot 3, put on stack

sue. backUp() ; // 6 nove back to the second sl ot

sue. put CIX() ; [/ 7 put CDin slot 2, taken from stack
|

Figure 2.2 shows the status of the Vic object at three points during one execution of the
MoveOne program. The first two statements of the main method create the Vic object,
position it at the first slot in the first sequence of slots, and make sue a reference to that
object. The top part of Figure 2.2 shows what things might look like at this point.

After the Vic object is created, the next three statements move the mechanical arm to the
third slot in the sequence and then take CD#1 out of that slot. The middle part of Figure
2.2 shows the current status. Note that CD#1 is no longer in the slot; it is on the stack.

The last two statements of the main method move the mechanical arm back up to the
second slot in the sequence and then have it transfer CD#1 from the stack into that
second slot. The bottom part of Figure 2.2 shows the final status of the machine.

2-4 Java Au Naturel by William C. Jones 2-4

After the second statement of MoveOne: sue = new Vic(,

Esue iz here

--------------- Cowt - CD#2 - - CD#3 | END

Atter the fifth statement of MoveOne: sue takeCD0),

Esue iz here

L e coge - - COf3 ErD
stack

After executing MoveOne

E e iz here

---------- CO#¥t - - ChE? - === CDES EMD

Figure 2.2 Stages of execution for MoveOne

The Vic simulator

The company engineers have not finished building the physical machine, so they have
provided you with a simulation in software. It is the Vic class, available on this book's
website. It lets you test the programs you write. When you run a program with this
simulation, a graphical representation of the entire machine appears on the screen with
CDs and slots. It carries out the commands you gave it, slowly enough for you to follow.
If for some reason you do not have that Vic class available, you may type in the simpler
implementation that is in Chapter Five and compile it.

To run an application program such as MoveOne in Listing 2.1, you must already have
the Vic class compiled. You type the lines of the MoveOne program into a plain-text file
named MoveOne. j ava, then compile it to produce the executable file named

MoveOne. cl ass. You enter j ava MoveOne at the prompt in the terminal window to
run the program. The runtime system then executes the commands in the executable file.

For this particular Vic simulator, the graphics display shows one to four sequences of
slots, representing actual components of the physical machine. Each sequence has at
most eight slots. Figure 2.3 shows roughly what the graphics display looks like. The Vic
software provides faked names for CDs consisting of a letter and a digit, so you can tell
which CDs were originally in which slots. The CD names along the left side (b1 and a2 in
the figure) are the CDs that are on the stack (b1 is on top of the stack).

Figure 2.3 shows three sequences with four slots in the first two and three slots in the
third. The stick figure indicates that only one Vic object has been created (i.e., new
Vi c() has been executed one time), and it is currently positioned at the second slot.

Vic methods that perform an action print a record of the action in the terminal window. If
the graphics window covers the terminal window, move the terminal window around to
make at least its lower part visible so you can see this record.

2-5 Java Au Naturel by William C. Jones 2-5

& I]

| Frogrammable GO Organizer mfd by Jones & Co. |

X

d1 g1 il EMD
[dz gl ErMD
c3 g3 EMD

h1

az

Figure 2.3 The graphics display for the Vic software

The reset command

You can test your programs by setting up the CDs in a particular order before a test run.
The Vic simulator provides a reset command that puts CDs in whatever slots you
choose at runtime; simply have Vi c.reset (args); as the first statement of the main
logic. For instance, if you want to have the arrangement of CDs shown in Figure 2.3, you
execute the program by giving the command

java MoveOne 0111 1110 101

in the terminal window. The simulator then creates three sequences (because you gave
three "words" after the basic command) with no CD wherever you have a 0 in a string
and a CD wherever you have something other than a 0.

If you execute the same program using the command j ava MoveOne 010 01100, the
simulator creates a machine with two sequences: The first sequence has three slots with
a CD only in the second slot, and the second sequence has five slots with CDs only in
the second and third slots.

Those extra words in the command line are called command-line arguments. The
runtime system puts those words in ar gs, and the r eset command uses the
information it receives in ar gs to initialize the simulation. If no words are entered, or if
the r eset command is not used before any Vic object is created, the simulation creates
an initial arrangement of CDs, slots, and sequences for you at random.

L anguage elements

A CompilableUnit can be: public class ClassName { Declaration }

A Declaration can be: public static void main (String[] args) { StatementGroup }

A StatementGroup is any number of Statements.

A Statement can be: ClassName VariableName ; eg., Vicsam;
or: VariableName = new ClassName () ; e.g., sam = new Vic();
or: VariableName . MethodName () ; e.g., sam.backUp();
or: ClassName . MethodName (Expression) ; e.g., Vic.reset(args);

Anything after // on alinein aprogram has no effect on the program.

2-6 Java Au Naturel by William C. Jones 2-6

Exercise 2.1 Write an application program that creates a Vic object and then moves a
CD out of its third slot into its first slot. Assume the first slot is empty and the third is not.
Exercise 2.2 Write an application program that creates a Vic object and then puts a CD
in each of its first three slots. Assume the stack has enough CDs.

Exercise 2.3 Write an application program that creates a Vic object and then takes a CD
out of its second slot and its fourth slot. Use r eset to be sure you have enough slots.
Exercise 2.4* Write an application program that creates a Vic object and then takes a
CD from each of its second and fourth slots and puts one of them in its fifth slot. Use
reset to be sure you have enough slots. Which one ends up in the fifth slot?

Exercise 2.5* Write an application program that creates a Vic object and then swaps the
CD in its third slot with the CD in its second slot. Assume it has CDs in both slots.

2.2 Defining A Subclass Containing Only Instance Methods

When a command in a program refers to a Vic object before the dot, it is a message sent
to the Vic object. For instance, sue. put CD() sends a message to sue requesting that
sue put a CD into the current slot from the stack of CDs. So the main method in
MoveOne (Listing 2.1) sends a message to a Vic requesting it to move forward to the
third slot and take the CD from that slot. It then sends messages to the Vic requesting it
to move back to the second slot and put the CD from the stack into that second slot.

Reminder: The stack and the sequences of slots exist independently of the program that
controls them. The phrase new Vi c() does not create a stack and a sequence; it only
creates a description of them in RAM. You need the internal description (object) so you
can send messages that cause changes in a physical stack and sequence.

Choosing statements to make into a method
You can expect to use the sequence of two messages

moveOn() ;
t akeCD() ;

many times in many programs, with various Vic objects receiving that pair of messages.
You saw sue doing these actions in Listing 2.1. Java allows you to invent new messages
for Vics that are combinations of existing messages. This simplifies your programs. For
instance, you can define a new message named noveTake: sam noveTake() tells
samto execute those two commands in that order, and sue. noveTake() tells sue to
execute those two commands in that order.

The sequence of two messages

backUp();
put CD() ;

will also be quite common, sent to various Vic objects (you saw it in Listing 2.1 with sue
receiving the messages). You can define a new message named backPut :

sam backPut () tells samto carry out those two messages in that order, and

sue. backPut () tells sue to carry out those two messages in that order.

A simple Vic object does not know what the two words noveTake and backPut mean.
They are not part of its vocabulary. You need a new class of objects that can understand
these two messages plus all the messages a Vic understands. Let us call this new kind
of Vic object a SmartVic. Then you could rewrite the main method in Listing 2.1 to do
exactly the same thing but with a simpler list of statements, as follows:

2-7 Java Au Naturel by William C. Jones 2-7

public static void main (String[] args)

{ SmartVic sam /1 create variable naned sam
sam = new SmartVic(); // create object that samrefers to
sam noveOn() ;

sam nmoveTake() ; /! take CD in slot 3, put on stack
sam backPut () ; /1 put that CDin slot 2
} | | ======================

How to define a class of objects

The class definition in Listing 2.2 says that, if you create an object using the phrase new
Smart Vi c() instead of new Vi c(), you can send the noveTake and backPut
messages to that object, as well as all of the usual Vic messages. In a sense, a
SmartVic object is better educated than a basic Vic object, because it inherits all of the
capabilities of a Vic object and adds two more.

Listing 2.2 The SmartVic class of objects

public class SmartVic extends Vic

public void nmoveTake()

{ nmoveOn();
t akeCD() ;
|
public void backPut ()
{ backUp();
put CD() ;
|

A class definition that extends the capabilities of a Vic object must have the heading
public class Wat ever NaneYouChoose extends Vic

followed by a matched pair of braces that contain some definitions. This particular class
definition contains two method definitions beginning publ i ¢ voi d. Within such a
method definition, you do not name the variable that refers to the object that receives the
message. This lets you use any variable name you like (such as sue, sam or
whomever) when you give the command outside the method. So the backPut definition
says that for any x, if you have previously defined x = new Smart Vi c(), then

X. backPut () has the same meaning as the following:

X. backUp();
X. put CI() ;

Listing 2.3 illustrates the use of these new commands in a program that moves three CDs
backward one slot. The program creates a new SmartVic object and sends it messages
to take the CD out of slot 2 and put that CD into slot 1. Then the object moves forward to
slot 2 so it can repeat the actions, this time taking the CD out of slot 3 and putting it in slot
2. Finally, the object moves forward to slot 3 and repeats the actions, this time taking the
CD out of slot 4 and putting it in slot 3. Figure 2.4 shows a sample run of this program.

2-8

Listing 2.3 An application program using one SmartVic

Java Au Naturel by William C. Jones

2-8

public class BringThreeBack

{
/[l Move the CDs in slots 2, 3, and 4 back to slots 1, 2, 3,
/1 respectively. Presunes a reset with at |east 4 slots.
public static void main (String[] args)
{ Vic.reset (args); /1
Smart Vi c sue; [l 2
sue = new SmartVic(); // 3
sue. moveTake() ; /[l 4 nove to slot 2 and take CD
sue. backPut () ; /[l 5 back to slot 1 and put CD there
sue. moveOn() ; /1 6
sue. moveTake() ; /[l 7 mnove to slot 3 and take CD
sue. backPut () ; // 8 back to slot 2 and put CD there
sue. noveOn() ; /19
sue. moveTake() ; // 10 nove to slot 4 and take CD
sue. backPut () ; /1 11 back to slot 3 and put CD there
|
}

After the third statement of BringThreeBack: sue = newy Smartic);

%sue iz here

--------------- D1 cogz - - CO#3 ERC
stack
After the severth statement of BringThreeBack: sue moveTakel);
%sue iz here
CO#1| | - e e coz - - Chos ERD
stack
After executing BringThresBack
% zUe iz here
__________ Co#l CchRz2 - - COw3 ERD

Figure 2.4 Stages of execution for BringThreeBack

Caution You will save yourself a lot of grief if you check the following three
points before you compile a class definition: (1) No class heading or method
heading has a semicolon at the end. (2) Each class heading and method
heading has a left brace immediately below it. (3) Every left brace has a
corresponding right brace several lines lower and aligned with it.

L anguage elements

A CompilableUnit can be: public class ClassName extends ClassName { DeclarationGroup }
A DeclarationGroup is any number of Declarations.

A Declaration can be: public void MethodName () { StatementGroup }

A Statement can be: MethodName () ; e.g., moveOn();

2-9 Java Au Naturel by William C. Jones 2-9

Terminology The phrase sue. noveTake() inthe BringThreeBack class is a method
call. The phrase public void noveTake() inthe SmartVic class is the method
heading. But the method itself is the process of moving the mechanical arm forward
and taking a CD. If you misspell or miscapitalize the method call, the compiler will not be
able to connect it to the method heading so that the runtime system can carry out the
method.

Exercise 2.6 Rewrite the main method in the answer to Exercise 2.1 to use SmartVics
instead of Vics, thereby shortening the logic.

Exercise 2.7 Rewrite the main method in the answer to Exercise 2.3 to use SmartVics
instead of Vics, thereby shortening the logic.

Exercise 2.8 Write a SmartVic method publ i ¢ voi d nmovePut () : The executor
moves forward one slot and puts a CD there from the stack.

Exercise 2.9 Write an application program that uses a SmartVic object, as augmented
by the preceding exercise, to move a CD from the third slot to the fifth slot.

Exercise 2.10* Write a SmartVic method publ i ¢ voi d backTake(): The executor
moves backward one slot and takes a CD from there to go on top of the stack.

Exercise 2.11* Write an application program that uses a SmartVic object, as augmented
by novePut and backTake as just described, to swap the CD in the second slot with the
CD in the first slot using only four message commands.

Exercise 2.12* Write an application program that uses a SmartVic object, augmented by
novePut and backTake as just described, to move the CD in the first slot into the
second, the CD in the second slot into the third, and the CD in the third slot into the first.

2.3 The If Statement

A program that is given bad input can produce bad results. For instance, if some program
is set up to accept only a numeric input at a certain point, and the input has letters in it,
the program may fail. Or if a Vic program is set up to take a certain action at the fourth or
fifth slot of a sequence and the sequence only has three slots, the program may fail. In
both of these cases the program is not robust: It does not handle unexpected input well.
For instance, Listing 2.3 is not robust because it fails if the sequence has only three slots.

You can make your Vic programs robust if you learn to expect the unexpected and adjust
for it. A program fails if there is no slot at a point where a Vic tries to put CD, t akeCD, or
nmoveOn. To prevent failure, you need to be able to test whether a certain condition is
true. Fortunately, you can ask a Vic object either of the two kinds of questions shown in
Figure 2.5; the Vic object (referred to here as aVi c) gives the answers in the form of a
condition (an expression that is either true or false).

aVi c. seesSl ot ()

is true if aVic is not past its last slot and is false otherwise. So it means aVic
actually has a current slot.

aVi c. seesCIX)

is true if aVic's current slot has a CD in it and is false otherwise. Evaluation of
this condition causes the program to fail if aVic.seesSlot() is false.

Figure 2.5 Two Vic methods that answer questions

Examples of if statements

In order to use these conditions, you need to have a kind of statement that will take an
action if a certain condition is true but will skip the action if the condition is false. The if-
statement is that kind of statement. It comes in two forms, illustrated in Listing 2.4.

2-10 Java Au Naturel by William C. Jones 2-10

Listing 2.4 An application program using one Vic object, with if-statements

public class TwoToFour

{
[/ If a CDis in the second slot, take it out and then
/] put it in the fourth slot if possible (robustly).
public static void main (String[] args)
{ Vic.reset (args); /1
Vi c sue; [l 2
sue = new Vic(); /1 3
sue. noveOn() ; /] 4
if (sue.seesC))) /15 if sue sees a CDin slot 2,
{ sue.takeCX); /1 6 t hen sue takes that CD
sue. noveOn() ; /7
sue. noveOn() ; /1 8
if (sue.seesSlot()) // 9 if sue has a slot nunber 4,
sue. put CIX() ; /] 10 then sue puts the CD there
} /1 11
|
}

Listing 2.4 creates a Vic object and has it move to the second slot in its sequence (lines
1-4). If it does not see a CD in that slot, nothing else happens in the program. This is
because the if-statement (line 5) tests the condition sue. seesCD() and, if the
condition is false, skips execution of all the statements between the matched braces that
follow the condition (lines 6-11).

Those statements to be executed if the second slot has a CD are to take the CD from the
slot, move on to the fourth slot, and put the CD there. However, a sequence might have
only three slots. If so, trying to put a CD in the fourth slot would make the program fail
(specifically, the Vic software prints a warning message and stops the program). So this
program tests the condition sue. seesSl ot () at the fourth slot (line 9) and, only if that
condition is true, executes the one statement that follows the condition (line 10).

An if-statement has two parts for you to fill in: the condition it tests and the subordinate
statement it executes only if the condition is true. This book boldfaces the word i f in
listings to signal it needs a subordinate statement. The two general forms of the basic if-
statement are as follows:

i f (Condition) i f (Condition)
St at enment { Statenent
Statement. ..
}

If you want a group of two or more statements to be executed only when the given
condition is true, you must put the matched pair of braces around the group. If you want
only one statement conditionally executed, you do not need the braces around it.
However, you may use them if you wish. As Listing 2.4 illustrates, you are allowed to
have any statements inside the braces of an if-statement, even another if-statement.

Continuing the email message metaphor of Section 1.6, when you write sam seesCIX)
in a program, it sends a message to the person whose email address is stored in sam
The message says, "Is it true or false that you see a CD in your current slot?" The
person sends back to you a response of true or fal se. You then look at the
response to decide what to ask the person to do next.

2-11 Java Au Naturel by William C. Jones 2-11

Using several Vic objects in a program

Suppose you want to move the CD from slot 3 into slot 5 for each of the first three
sequences of slots. This is a very straightforward thing to do except for two possible
problems: One is that you might not have as many as three sequences, and the other is
that one or more of those sequences might not have as many as five slots.

The seesSl ot () method call can be used to solve both of those problems. The first
time your program creates a new Vic object, you get the first sequence of slots. The next
time your program creates a new Vic object, you get the second sequence of slots, if
there is one. If you then immediately test seesSl ot (), it will be false if there was no
second sequence. Otherwise, it will have at least three slots, since all sequences do.
This all leads to the structured plan shown in the accompanying design block.

DESIGN for moving the CD from slot 3 into slot 5 for each of three sequences
1. Create the first Vic object.
2. If its third slot contains a CD, then...

Move it into the fifth slot, checking first that the Vic has a fourth and fifth slot.
3. Create a second Vic object.
4. If it has at least one slot, it has at least three (by definition of Vics), so...

4a. Do what you did for the first sequence, as described in step 2.

4b. Create a third Vic object.

4c. If it has at least one slot, it has at least three (by definition of Vics), so...

Do what you did for the first sequence, as described in step 2.

Listing 2.5 (see next page) implements this plan as a Java program. Since Step 2
requires a method for accomplishing a subtask that is used in two more places, it is best
to make a Java method out of it, the shi ft Thr eeToFi ve method in the Shifter class
(Note: You do not need to memorize any of these Vic subclasses for later in this book).

Java requires you to put each class with the heading public cl ass Wat ever ina
separate file to be compiled, with the name What ever . j ava. Listing 2.5 is the contents
of two separate compilable files, Thr eeSequences. java and Shifter. | ava.

Note particularly the advantage of defining a method without mentioning which object is
to carry out the task. That allows you to have three different Vic objects execute the
sequence of statements in the shi ft Thr eeToFi ve method.

The ThreeSequences program creates three different sequences, so it uses the three
different descriptive variable names one, t wo, and t hr ee. However, since one is never
mentioned after t wo is created, nor t wo after t hr ee is created, you could use just one
Vic variable throughout. For instance, you could write samin place of each of the three
variable names in that class. But then you would have to omit the second and third
declarations of Vic variables -- you can only declare a variable one time in a method.

For all exercises from now on, unless otherwise stated, write your answer so that the
application programs cannot fail. You are doing all the unstarred exercises, are you not?
You cannot learn this material well if you do not do them. You may compile a method
you write as an exercise by enclosing it in a matched pair of braces with an appropriate
class heading.

L anguage elements
A Statement can be: if (Condition) Statement
or: if (Condition) { StatementGroup }
A Condition can be: MethodName () e.g., seesCD()

or: VariableName . MethodName () e.g., sue.seesCD()

2-12 Java Au Naturel by William C. Jones 2-12

Listing 2.5 An application program using three objects of the Shifter class

public class ThreeSequences

{
[/l For each of the first three sequences, nove a CD fromthe
/[l third slot to the fifth slot, insofar as possible.

public static void main (String[] args)
{ Vic.reset (args);
Shifter one;

one = new Shifter(); /] design step 1
one. shi ft ThreeToFi ve() ; /] design step 2
Shifter two;
two = new Shifter(); /] design step 3
if (two.seesSlot()) /] design step 4
{ two.shiftThreeToFive(); [/l design step 4a
Shifter three;
three = new Shifter(); /1 design step 4b
if (three.seesSlot()) /1 design step 4c
t hree. shi ft ThreeToFi ve() ;
}
|

}
| | #HBHHHBHHHBHHH B H B H B H R H R H R R R R R R R R

public class Shifter extends Vic

{
[/l take the CD fromslot 3 (if any) and put it in slot 5.

public void shiftThreeToFi ve()
{ nmoveOn();
moveOn() ; // nowin slot 3
if (seesCD())
{ takeCD();
moveOn() ; [/ nowin slot 4
if (seesSlot())
{ nmoveOn(); [/ nowin slot 5
if (seesSlot())

put CD() ;

y o1

}

Exercise 2.13 Revise the program in the earlier Listing 2.3 so it cannot fail even with
bad input (from the r eset method).

Exercise 2.14 Write an application program that creates a Vic and then has it take a CD
from each of its fourth and fifth slots. Be sure the program cannot fail.

Exercise 2.15 Write a method publ i ¢ voi d swapTwo() for a subclass of Vic: The
executor swaps the CD in the current slot with the CD in the following slot, except that it
moves no CD at all if either CD is missing. Leave the executor at its original position.
Exercise 2.16* Write an application program that creates a Vic and then has it take a
CD out of its fifth slot and put it into its seventh slot. Be sure the program cannot fail.
Exercise 2.17* Write an application program that moves a CD from slot 3 to slot 2 of the
first sequence and also from slot 2 to slot 3 of the second sequence. Use SmartVic
objects (as defined in the earlier Listing 2.2). Be sure the program cannot fail.

Exercise 2.18* Write an application program that takes the CD out of the second slot of
each of the first four sequences. Use SmartVic objects. Be sure the program cannot fail.

2-13 Java Au Naturel by William C. Jones 2-13

2.4 Using Class Methods And Javadoc Comments In A Program

Some methods can be called with the class name in place of an executor. An example is
Vi c. reset (args). Such a method is called a class method. You are sending a
message to the class as a whole, not to an individual instance of the class. By contrast,
a method that requires an instance (object) of the class for its executor is an instance
method.

Two new Vic class methods

The Vic class provides a class method for you to print messages on the display. If you
put Vic.say("Hello world") inyourprogram, Hell o worl d will appear on an
LCD screen on the front of the machine. Vi c. say("No CDs") willcause No CDs to
appear on the front of the machine. You can put whatever you want inside the quotes
except a backslash \ or quotes themselves (this caveat is explained in Chapter Six).

The Vic class also provides a class method for you to find out whether the stack has any
CDs on it (as opposed to being empty). If you execute sam put CD() and the stack is
empty, nothing happens. Often you need to know whether something happens. So you
test the condition Vi c. st ackHasCD() . Figure 2.6 describes these two new methods
more precisely.

Vi c. say("what ever")

displays the given message on an LCD screen the machine has, so the operator
of the Programmable CD Organizer can read it. The command first erases
whatever might have been on the LCD screen before.

Vi c. st ackHasCIY)

is true if the stack contains at least one CD and is false otherwise.

Figure 2.6 Two new Vic class methods

A parameter or argument is a value you put in the parentheses after a method name to
make a method call. It gives information to the method that it needs so it can do its job.
The parameter of Vi c. say is always a string of characters. The phrase

Vi c.say("Hell 0o") isamethod call with a parameter, namely "Hel | 0" .

Vi c. reset (args) is another method call with a parameter ar gs, which contains
whatever strings of characters might have been typed on the command line.

Programming Style Java allows you to call a class method by using an
(ﬁ instance of the class in place of the class name. For instance, if you declare

Vi ¢ samthen sam say("H ") is alegal method call and does the same
thing as Vi c. say("H "). However, this can be deceptive, so it should be
avoided.

The swit chTo method in the Turtle class (Section 1.4) is actually a class method,
since the color applies to the drawing surface rather than to the individual Turtle. So it is
better to use Turtl e.sw tchTo(aCol or) than sam switchTo(aCol or). This
was not mentioned in Chapter One only because it contained enough material as it was.
Note: You may use say or st ackHasCD within a method in a subclass of Vic without
having "Vic." before it -- the compiler will know what you mean.

2-14 Java Au Naturel by William C. Jones 2-14

Example using the three class methods

Suppose you would like to have a program to fill in the first three slots of the first
sequence. The program begins with an unknown number of CDs in the stack. It makes
sense to stop trying to fill slots as soon as the stack runs out of CDs. So begin by seeing
if the stack has any CDs. If so, you create a new Vic object and fill the first slot, then
check to see if the stack has more CDs. If so, you move on to the second slot and put a
CD there. You check one more time to see if the stack still has at least one CD. If so,
you move on to the third slot and put a CD there.

This logic is implemented in Listing 2.6. The condition in line 3 causes the executor to
skip lines 4-15 if the stack is empty. The condition in line 7 causes the executor to skip
lines 8-14 if the stack is empty at that point. Of course, if a slot already has a CD in it, the
sue. put CD() message has no effect, so the CD on the stack will be available for the
next slot.

Listing 2.6 An application program using the three Vic class methods

public class Fill ThreeApp

{
[** Put a CDin each of the first three slots.
* Stop as soon as you run out of CDs on the stack. */
public static void main (String[] args)
{ Vic.say ("This programfills the first three slots.");
Vic.reset (args); /[l 2
if (Vic.stackHasCD()) /1 3
{ Vic sue; /] 4
sue = new Vic(); /15
sue. put CIX() ; /1 6 in slot 1
if (Vic.stackHasCD()) /7
{ sue.nmoveOn(); /1 8 to slot 2
sue. put CIX() ; /19
if (Vic.stackHasCD()) /] 10
{ sue.nmoveOn(); /1 11 to slot 3
sue. put CIX() ; [l 12
} /1 13
} /[l 14
} [/ 15
Vic.say ("All done!"); /1 16
|
}

Elementary javadoc comments

Listing 2.6 illustrates a second kind of Java comment: /* causes everything to be
ignored until */ is seen, even if several lines later. This book henceforth uses the
javadoc standard for commenting methods, which is the following:

Put the description of the method before the method heading, beginning with / **.
Put an asterisk at the beginning of each additional line (this asterisk is optional).
Put */ atthe end of the comment.

The javadoc formatting tool uses these special comments. You execute it by issuing in
the terminal window the command j avadoc SomeCl ass. j ava for a class declared in
the Sonmed ass. j ava file. Then the javadoc formatting tool produces a webpage in a

2-15 Java Au Naturel by William C. Jones 2-15

file named Soned ass. ht Ml which displays documentation for the class very nicely.
Each comment that comes right before a public class, method, or variable declaration
and begins with / ** appears in this documentation (you will learn about public
variables in Chapter Five).

L anguage elements
A Condition can be: ClassName . MethodName () eg., Vic.stackHasCD()
A Statement can be: ClassName . MethodName (someString) e.g., Vic.say ("Hi");

Anything between /* and */, even over several lines, has no effect on the program.

Exercise 2.19* Write an application program that fills the third and fourth slots in the
second sequence. Stop as soon as you run out of CDs in the stack. Print an appropriate
message at the beginning of the program. Be sure the program cannot fail.

Exercise 2.20* Write a method public void fill Three() fora subclass of Vic:
The executor puts a CD in each of its first three slots, but stopping when the stack is
empty (hint: similar to part of Listing 2.6). Then revise Listing 2.6 to use that method to
have both the first and the second sequence fill their first three slots.

2.5 The If-Else Statement And The Block Statement

Listing 2.7 is a Java program for a machine with at least two sequences. It creates one
Vic for each sequence. Then it sends messages to each Vic asking it to take a CD if one
is in its first slot, but to put a CD there if no CD is in its first slot. The program uses the
if-else statement to decide which of two messages to send, t akeCD or put CD. The
word el se in this context essentially means "otherwise" or "if that condition wasn't
true”. You should compile this program and run it several times to watch it work.

Listing 2.7 An application program using two Vics

public class TwoVics

{

[** Take the CDin slot 1 if there is one, otherw se put a
* CDthere; repeat for the second sequence, if any. */

public static void main (String[] args)

{ Vic first; /1
first = new Vic(); /[l 2
if (first.seesC()) /1 3

first.takeC(); /] 4

el se /[l 5
first. putCX); /1 6
Vi ¢ second; [7
second = new Vic(); /1 8
if (second.seesSlot()) /19
{ if (second.seesC()) /] 10
second. t akeCX) ; /1 11

el se /[l 12
second. put CIX() ; /1 13

} /[l 14

|

2-16 Java Au Naturel by William C. Jones 2-16

The general form of an if-else statement is as follows. If you want to replace either of
these Statements by a group of two or more statements, you put a matched pair of
braces around that group. The compiler will then treat the braces plus the group of
statements within it as one statement, called a block statement:

i f (Condition)
St at enent
el se
St at enent

When an if-else statement is executed, the runtime system begins by evaluating the if-
condition. If the condition is true, the statement after it is executed and the statement
after the el se isignored. If the condition is false, the statement after it is ignored and
the statement after the el se is executed. That is, exactly one of them is executed.
Figure 2.7 illustrates the meaning of the two varieties of conditional statements you have.

condition condition

true true

statement statement

falze falze

statement

L I
if-statement if-elze-statement

Figure 2.7 Flow-of-control for if and if-else statements

Examples of block statements

The following are some examples that use block statements in an if-else statement. The
general principle is that, if the action to be taken when the if-condition is false consists of
two or more statements in sequence, you need to put a matched pair of braces around
those statements:

if (Vic.stackHasCD()) if (seesSlot()) if (seesCD())
{ putCX); t akeCIX() ; { takeC);
moveOn() ; el se moveOn() ;
} { backUp(); put CIX() ;
el se t akeCD() ; }
{ nmoveOn(); moveOn() ; el se
t akeCD() ; } moveOn() ;

}

Caution If you forget a pair of braces around a group of statements after
el se or after the if-condition, the program usually produces the wrong
result. Even if you indent properly, the program still produces the wrong
result. It may not even compile without error. Indentation makes the logic
easier for humans to understand; the compiler ignores it.

2-17 Java Au Naturel by William C. Jones 2-17

The physical mechanism

You are perhaps puzzled about how the physical mechanism can do a noveOn operation
to a non-existent position where seesSl ot () is false, e.g., when it is already at the
seventh slot in its sequence of seven. The physical mechanism has a gripper part that
moves in a groove beside the sequence, stopping next to the appropriate slot. Slots are
3/8" apart, so the gripper moves 3/8" each time. The groove extends 3/8" beyond the last
slot. So it can move in the groove though it is not to a slot.

In the virtual mechanism, there is no gripper and no groove. The noveOn operation adds
1 to the numeric value tracked by its position. So even if there are only seven slots, its
position can still be the number 8.

Lab Practice You are probably writing most of the unstarred exercises on a sheet of
paper and checking them against the answers. But you should from time to time type up
at least a few of the exercises and compile them without first looking at the answers (the
answer to an exercise saying "Write a method...for a subclass of Vic" should be put
inside your own class that extends Vic and compiled). This tests to make sure you know
where the parentheses, braces, and semicolons go, and that you are using correct
capitalization, too. These things are not hard, but they do take some practice: You can't
learn stuff if you don't do stuff.

L anguage elements
A Statement can be: if (Condition) Statement else Statement
or: if (Condition) Statement else { StatementGroup }
or: if (Condition) { StatementGroup} else Statement
or: if (Condition) { StatementGroup} else { StatementGroup }

Exercise 2.21 Write a statement that puts a CD in sanis current spot if there is no CD
there and the stack has a CD, but otherwise moves on to the next slot.

Exercise 2.22 Write a method publ i ¢ voi d shi ft Forwar d() for a subclass of Vic:
The executor moves the CD from the next slot into the current slot, but only if the current
slot is empty and the next slot exists and is not empty. In either case, the executor is at
the next slot after the method finishes executing.

Exercise 2.23** Write an application program that only does things with the second
sequence: First take a CD from its first slot and one from its fourth slot; then if at least
one of those two slots was not empty, put a CD in its second slot.

2.6 Boolean Methods And The Not-Operator

You have seen two kinds of Vic instance method calls: four actions (t akeCD, put CD,
nmoveOn, and backUp) and two conditions (seesSl ot and seesCD). And you have
seen how to define new actions in an extension of the Vic class. In this section you will
see how to define new conditions in an extension of the Vic class.

Preconditions

Programming Style It is good style to have a comment at the beginning of
each method definition to describe what happens when the commands in the
method are carried out. This header comment should include the precondition
of the method, if any. The precondition of method M is what each method
that calls M must verify is true before making the call, in order that method M
produce the expected result (i.e., the result described by its header comment).

This book will henceforth include the precondition in all listings where they are needed.
The methods earlier in this chapter that had an unstated precondition are as follows:

2-18 Java Au Naturel by William C. Jones 2-18

noveTake in Listing 2.2. Precondition: There is a slot after the current slot.
backPut in Listing 2.2. Precondition: There is a slot before the current slot.

shi ft Thr eeToFi ve in Listing 2.5. Precondition: The sequence has at least two
slots after the current slot.

The main method in Listing 2.3 fails if its sequence does not have four slots, but that is
not a precondition -- mai n is called by the operating system, not by another method.

The not-operator

Sometimes you need to test to see if a slot is empty. The Vic class does not provide a
separate condition to do that. But in Java, if you put an exclamation mark in front of a
condition, it means the opposite of the condition. ! sam seesCD() means "it is false
that sam sees a CD", i.e., the current slot is empty. (When you read a phrase involving
I aloud, you could say "not" for the "!I").

The first if-else statement in Listing 2.7, repeated below on the left, could be written
instead as shown on the right to use this not-operator and have the same effect:

if (first.seesC()) if (! first.seesCX))
first.takeC); first.putCX);

el se el se
first.putCX); first.takeC);

Development of the hasTwoOnStack method

The first method defined here is hasTwoOnSt ack, a method that has the executor
answer the question, "Are at least two CDs on the stack?" This particular question is to
be asked only when the executor is at an empty slot (the precondition). An example of a
statement that asks this question and makes use of the answer is the following:

i f (sue.hasTwoOnStack())
sue. noveOn();

The task is not simple to do, so you should design a plan in ordinary English to do it (or
whatever natural language you think in most comfortably) before you try to implement it in
Java. Write as if explaining it to a literal-minded not-very-bright person. A reasonable
plan is shown in the accompanying design block.

DESIGN of the hasTwoOnStack method
If you do not have any CD at all on the stack, then...
The answer is f al se; all further analysis is terminated.
Otherwise...
Put a CD from the stack into the empty slot.
Make a note of whether you have a CD on the stack at this point.
Take the CD back onto the stack.
The answer is whatever you made a note of; no further analysis is needed.

Return statements

When you define a new method asking a true-false question, such as hasTwoOnSt ack,
you have to use a special statement to say whether the answer to the questionis true
or fal se. The statement return fal se; means execution of the method gives the
answer f al se atthat point and ignores the rest of the statements in that method.
Similarly, the statement return true; means execution of the method gives the
answer true atthat point and ignores the rest of the statements. The key point:
Executing a r et urn means the rest of the statements in the method are skipped.

2-19 2-19

Java Au Naturel by William C. Jones

A Java implementation of this hasTwoOnSt ack method is in the upper part of Listing 2.8.
It looks different from earlier methods in two ways: It has the word bool ean and it has
return statements (lines 2, 6, and 10). The word bool ean in the heading says this
method returns a true-false value ("boolean" commemorates a 19th-century logician
named George Boole). So you may put a call of this boolean method inside the
parentheses of an if-statement, asin i f (sam hasTwoOnSt ack()) sam put CIX) .

Listing 2.8 The Checker class of objects, with two boolean methods

public class Checker extends Vic
{

[** Tell whether the stack has at | east two CDs.
* Precondition: the executor is not at the end
* of its slots and the current slot is enpty. */

publ i ¢ bool ean hasTwoOnSt ack()

{ if (! stackHasCI()) /1

return fal se; /] 2
put CD() ; /1 3
if (stackHasCD()) /] 4
{ takeCD(); /[l 5

return true; /] 6
} [l 7
el se /] 8
{ takeCD(); /[l 9

return fal se; /] 10
} /[l 11

|

/** Tell whether the executor's current slot and the one
* after it exist and have no CD. No precondition. */

publ i c bool ean seesTwoEnpt y()

{ if (! seesSlot()) [l 12

return fal se; /] 13
if (seesCD()) /[l 14

return fal se; /] 15
moveOn() ; /1 16
if (seesSlot()) [l 17

if (! seesC)) /] 18

{ backUp(); /1 19

return true; /] 20

} /[l 21
backUp() ; [l 22
return fal se; /] 23

|
}

Programming Style Surely you wondered why the executor should bother to
take the CD back to the stack (using the if-else statement) before it returns
true or fal se. Thereasonis, soneVi c. hasTwoOnSt ack() isa
guestion you ask some Vic about its current state, and it is not good style to
have the process of answering the question alter that state in any way.
Quite often, alteration would make the answer useless.

2-20 Java Au Naturel by William C. Jones 2-20

Development of the seesTwoEmpty method

The second boolean method defined here is seesTwoEnpt y, asking the executor
whether both the current slot and the next slot exist and are empty. The task is not simple
to do, so you should design a plan in ordinary English to do it before you try to implement
it in Java. A reasonable plan is shown in the accompanying design block.

DESIGN of seesTwoEmpty

If you do not have a slot or if you see a CD in your current slot, then...
The answer is f al se; all further analysis is terminated.

Move on to the next slot (if any).

If you have a slot there and if you do not see a CD in your current slot, then...
The answer is t r ue.

Otherwise...
The answer is f al se.

Return the answer determined in the previous step, after backing up to the original
position.

The definition of the seesTwoEnpty method is in the lower part of Listing 2.8. Note
that, after the answer to the question is determined, the executor should back up to its
original position (lines 19 and 20) so answering the question about its state does not
change that state. Suppose you use these methods in some instance method as follows:

if (seesTwoEnpty())
i f (hasTwoOnSt ack())

{ putCX();
nmoveOn() ;
} put CD() ;

This logic makes sure you can safely put a CD in each of the next two slots. Imagine
your surprise if the program were to fail because verifying the safety of the actions was
what made those actions unsafe. That is why the executor should restore its state.

Note: Execution of a r et ur n statement terminates all action in the current method.
Therefore, the el se in the hasTwoOnSt ack logic can be omitted (and its matching
braces as well) without affecting what the method does.

Design before you implement in Java

The written designs you have seen for hasTwoOnSt ack and seesTwoEnpty give a
structure to the ordinary English sentences when a selection of several alternatives is to
be made. Specifically, they show the alternatives indented below the conditions that
decide which alternative is to be chosen. This kind of design is highly effective in helping
you create individual methods that work correctly the first time.

Whenever you have to develop a method to accomplish a task, and the logic is not
immediately obvious, you should first design a plan as illustrated here, in accordance with
the general programming principle, "If you do not know where you are going, you are not
likely to get there."

The translation of a design into a particular programming language is called coding. The
translation of "Look before you leap” into programming is, "Design before you code."

2-21 Java Au Naturel by William C. Jones 2-21

L anguage elements
A Declaration can be: public boolean MethodName () { StatementGroup }
A Condition can be: I Condition e.g., 'seesCD()
or: true
or: fase
A Statement can be: return Condition ;

Exercise 2.24 Write a method publ i ¢ bool ean hasNoS| ot () for a subclass of Vic
to mean the opposite of seesSl ot .

Exercise 2.25 Write a method publ i ¢ bool ean canTakeCD() for a subclass of Vic:
The executor tells whether it could take a CD from its current position if told to do so.
Exercise 2.26 Write a method publ i ¢ bool ean canPut CD() for a subclass of Vic:
The executor tells whether it could put a CD in its current position if told to do so.
Exercise 2.27* Write a method publ i ¢ voi d put Next Avai | abl e() for a subclass
of Vic: The executor puts a CD in the next available slot. Precondition: The stack is not
empty and either the current slot or the next slot is empty.

Exercise 2.28* Write a method publ i ¢ bool ean seesTwoFi | | ed() for a subclass
of Vic: The executor tells whether its current slot and the next slot exist and both have
CDs. Leave the executor in its original state.

Exercise 2.29* Write a method publ i ¢ bool ean hasJust OneOnSt ack() for a
subclass of Vic: The executor tells whether exactly one CD is on the stack. Precondition:
Its current slot exists and is empty. Leave the executor in its original state.

2.7 Boolean Variables And The Assignment Operator

A method that effects a change in the state of one or more objects and does not return a
value is an action method. Commands such as sam noveOn() and sue. put CIX)
call action methods in the Vic class. These commands tell their executor to do something.

A method that returns a value and does not effect a change in the state of any object
(executor or otherwise) is a query method. Commands such as Vi c. st ackHasCD()
and sam seesS| ot () call query methods in the Vic class. These commands ask their
executor a question and get an answer in return, without changing the state of the
executor.

Technical Note This is not official Java vocabulary, just words to help you see patterns
and categories: A method call can be a message to the "executor" to answer a "query"
or perform an "action". An action method is a method with "void" just before the method
name in the heading. But "void" is not a description of the method, it is just the signal to
the compiler that no value is to be returned.

The hasTwoOnSt ack method in Listing 2.8 is a query method because care was taken
to put the CD back on the stack before returning. This restored the original state. A true
guery method answers a question without making any change in any object. Similarly,
seesTwoEnpty is a query method because care was taken to restore the original
position in the sequence. However, the logic in those two methods is clumsy and a bit
difficult to follow. It is time you learned about boolean variables.

You have seen how to declare the name of a variable that holds a Vic object. You can
also declare the name of a variable that holds a boolean value (i.e., a value that is either
true or fal se). Forinstance, bool ean t heAnswer declares t heAnswer as the
name of a place where either true or fal se can be stored. You can then have the
command return theAnswer ina boolean method that has declared t heAnswer
and given it a value of true or fal se.

2-22 Java Au Naturel by William C. Jones 2-22

Declaring a variable name within a method does not by itself give the variable a value.
You have to assign a value to it using the assignment symbol =, which you have seen
used in statements such as sue = new Vi c(). You should almost always assign a
value to a variable by the very next statement after you declare it. You can later change
the value assigned to the variable if you wish.

Rewrite of the hasTwoOnStack method to use a boolean variable

For the hasTwoOnSt ack method definition in Listing 2.8, after put CD() is executed,
the value of st ackHasCD() is eithertrue orfal se. And that is the value to be
returned. It is clearer to store the value of st ackHasCIY) in a boolean variable
(named perhaps r esul t), then execute t akeCD() before returning the value of
result.

The upper part of Listing 2.9 shows how the hasTwoOnSt ack method can be rewritten
using a boolean variable. The assignmentto result inthe method (line 5) could be
written instead as follows, with exactly the same effectas result = stackHasCI(),
but it is wasteful to do so:

if (stackHasCD())
result = true;
el se
result = fal se;

Listing 2.9 Rewrites of two boolean methods in Checker

[** Tell whether the stack has at | east two CDs.
* Precondition: the executor is not at the end
* of its slots and the current slot is enpty. */

publ i ¢ bool ean hasTwoOnSt ack()

{ if (! stackHasCI()) /1
return fal se; /[l 2
put CD() ; /1 3 nodi fy state
bool ean result; /1 4
result = stackHasCIX); /15
t akeCD() ; /1 6 restore state
return result; /7
|

/[** Tell whether the executor's current slot and the
* one after it exist and have no CD. No precondition. */

publ i c bool ean seesTwoEnpt y()

{ if (! seesSlot()) /1 8
return fal se; /Il 9
if (seesCD()) /] 10
return fal se; /[l 11
moveOn() ; [l 12 nodi fy state
bool ean val ueToRet ur n; /] 13
if (! seesSlot()) /[l 14
val ueToReturn = fal se; /] 15
el se /] 16
val ueToReturn =1 seesCI(); [l 17
backUp() ; /] 18 restore state
return val ueToRet ur n; /[l 19

1y

2-23 Java Au Naturel by William C. Jones 2-23

Rewrite of the seesTwoEmpty method to use a boolean variable

In the earlier seesTwoEnpt y method definition, after noveOn() is executed, the value
to be returned istrue if seesSl ot () istrue and seesCI)) isf al se, otherwise the
value to be returned is f al se. Itis clearer to store that true/false value in a boolean
variable (named perhaps val ueToRet ur n), then execute backUp() before returning
the value of val ueToRet ur n. This is done in the lower part of Listing 2.9.

You should carefully compare the coding in Listing 2.9 with the logic in the earlier Listing
2.8 to see the difference. In each case, the first few lines are the same, down to where
the state of the executor changes. The line numbers are so future discussion can refer to
those lines.

The crucial difference between Listing 2.8 and Listing 2.9 for the sees TwoEnpt y method
occurs after roveOn: In Listing 2.8, if seesSl ot () istrue and seesCD() isfal se,
the executor backs up and returns t r ue, otherwise the executor backs up and returns

f al se. By contrast, in Listing 2.9, if seesSl ot () istrue and seesCD() isfal se,
the executor simply stores t r ue in the variable, otherwise the executor stores f al se in
the variable (lines 14-17). Then, in either case, the executor backs up and returns
whatever value it previously stored in the variable (line 19).

Programming Style All methods that return a value are to restore the original
state of all objects before returning, unless explicitly stated otherwise (and then
only if there is a very good reason). This is an important point of good style.

Pictorial representation of values in variables

Figure 2.8 shows a picture of what might be stored in RAM after you (a) create an object
for pamto refer to (indicated by an arrow from pamto the internal description of the
object), and (b) assign t r ue to a boolean variable named r esul t . The Vic object
keeps track of the stack of CDs, its sequence of slots, and its position in the sequence.
A newly-created Vic always starts at position number 1.

Yalues of variables after executing these two statements: pam = new Wic (), result = true;

i it
T et
it=Position true
'rtsSequenu:eG:l\
theStack [\
Co#| | CO#1 COR2 - - CD#3 | END
stack

Figure 2.8 Object references as arrows to the objects

Each rectangle in the figure represents one variable. An arrow is shown leaving each
variable which refers to an object. A standard notation for an object is a box with three
parts, where the top part has the class of the object underlined, the middle part lists
variables which are part of the object, and the bottom part is often left blank.

Are you skipping many of the unstarred exercises? That is not a good idea, you know.
You cannot just read this material as if it were a novel. You will start to become confused
by so many new concepts. At a minimum, spend just two minutes on each unstarred
exercise and then, done or not, check out its answer at the end of the chapter. This will
take less than ninety minutes per chapter, you will learn a lot more, and that learning will
help you complete your graded course assignments faster and better.

2-24 Java Au Naturel by William C. Jones 2-24

L anguage elements
A Statement can be: boolean VariableName ; e.g., boolean valueT oReturn;
A Condition can be: VariableName e.g., valueToReturn

Exercise 2.30 Rewrite the hasTwoOnSt ack method of Listing 2.9 to have just one
return statement. Precondition: Its current slot exists and is empty. Hint: You will need
el se followed by braces.

Exercise 2.31 Write a query method publ i ¢ bool ean at Mbst OneOnSt ack() for a
subclass of Vic: The executor tells whether the stack has either zero or one CD on it.
Precondition: Its current slot exists and is empty. Only have one return statement.
Exercise 2.32* Write a query method publ i ¢ bool ean hasOneBef ore() fora
subclass of Vic: The executor tells whether a CD is in the slot before the current slot.
Have only one return statement. Precondition: The executor is not at the first slot in its
sequence.

Exercise 2.33** Write an application program to move the first two available CDs in the
first sequence of slots to the stack. Precondition: That sequence has at least two CDs in
its first four slots. Hint: First create a boolean variable al r eady TookCD. Make itt r ue
if you take the first CD and f al se if not. Use it to decide what to do at later slots.

2.8 Boolean Operators And Expressions; Crash-Guards

If you put && between two true-false expressions it means "and". That is, the combined
expression is true only when both of its two parts are true. The two parts are called the
operands of &% Now you can rewrite these lines 14-17 of Listing 2.9

if (! seesSlot())
val ueToReturn = fal se;

el se
I seesCI();

val ueToRet urn
more compactly and more clearly, but with exactly the same effect, as follows:

val ueToReturn = seesSlot() & ! seesCX);

If you put || between two true-false expressions, it means "or". That is, the combined
expression is true when either the first operand of || is true or the second operand of
| | is true, or both. Now you can rewrite these lines 8-11 of Listing 2.9

if (! seesSlot())
return fal se;

if (seesCD())

return fal se;

more compactly and more clearly, but with exactly the same effect, as follows:

if (! seesSlot() || seesC))
return fal se;

The three symbols && and || and ! are called boolean operators because they
operate on boolean (true-false) expressions to produce a boolean expression. The !
operator has only one operand.

Short-circuiting boolean expressions

In the expression seesSlot () & & ! seesCX), ifit happens seesSl ot () is
f al se, the runtime system does not look at the operand after the && and the result

2-25 Java Au Naturel by William C. Jones 2-25

f al se is obtained. This is good, because otherwise the program would fail. And if

seesSl ot () isfalse in the expression! seesSlot() || seesCI), the operand
after the || is notlooked at and the result t r ue is obtained, so again the program
does not fail.

In each case, the first operand of the expression is a "crash-guard” for the second
operand, in that it prevents evaluation of the second operand in precisely those situations
where the evaluation would crash the program. The && and || operators short-
circuit the condition they form: The second operand of an && or || expression is not
evaluated if the first operand by itself determines its truth or falseness. From this
discussion you can see that the seesTwoEnpty method of Listing 2.9 can be written
more compactly as shown in Listing 2.10.

Listing 2.10 Improved replacement for the seesTwoEmpty method in Checker

publ i c bool ean seesTwoEnpt y()
{ if (! seesSlot() || seesCI())
return fal se;
moveOn() ;
bool ean val ueToRet ur n;
val ueToReturn = seesSlot() & ! seesCX);
backUp() ;
return val ueToRet ur n;
|

Caution Put parentheses around an expression formed with || or && if
the expression does not stand alone as an if-condition or as something
assigned to a boolean variable. That is, it should have parentheses around
itwhenitisanoperandof || or ! or & (x || y) && z is different
from x || (y && z). Also, if you want ! to apply to an expression that
is not a simple method call or variable, you should put parentheses around that
expression. There are times when the parentheses are not needed, but it is safer to
always use them in such cases.

L anguage elements
A Condition can be: Condition && Condition
or: Condition || Condition

Exercise 2.34 Rewrite the answer to Exercise 2.25 (canTakeCD) so that the body is a
single return statement.
Exercise 2.35 Rewrite the answer to Exercise 2.26 (canPut CD) so that the body is a
single return statement.
Exercise 2.36 Explain why the following causes compilation errors:
i f(sam seesSl ot)

sam put CI() ;

sam noveOn() ;
el se

samt akeCX) ;
Exercise 2.37* Rewrite seesTwoEnpt y in Listing 2.10 so it contains only one return
statement.
Exercise 2.38** Write a method publ i ¢ voi d shiftDown() for a subclass of Vic:
The executor moves the CD in its current slot into the following slot, except no change is
to be made at all if there is no empty following slot or if there is no CD in the current slot.
Avoid all program failures. Use boolean operators where appropriate.

2-26 Java Au Naturel by William C. Jones 2-26

2.9 Getting Started With UML Class Diagrams And Object Diagrams

The standard method for drawing a

model of a program uses the Unified TuwwoToF our Wi
Modeling Language, UML for short. [[~~~ 7=~ =

A class diagram is a picture that el)
shows the classes the program uses maing) take O)
and some relations between them. — mavetn)
For instance, Figure 2.9 is a class seesC00)
diagram for the TwoToFour resetl)
application program in the earlier seestiot])
Listing 2.4. pUtCo)

Figure 2.9 UML class diagram for TwoToFour

This diagram has two class boxes with a dependency indicated by a dotted-line arrow. A
class box is a rectangle with three parts separated by horizontal lines. A dependency
means the one class uses the methods in the class pointed to.

The top part of the class box contains the name of the class (not underlined, to
distinguish it from an object box as shown in Figure 2.8). The middle part (between the
two lines) is for attributes. It is blank in this diagram. The bottom part lists the method
calls used in the program. The names of class methods are to be underlined.

UML generalization

Figure 2.10 shows the class diagram for the program BringThreeBack in the earlier
Listing 2.3. The diagram shows the two classes mentioned in this program, namely,
BringThreeBack itself plus the SmartVic class. Since the noveOn and r eset methods
that BringThreeBack uses are inherited from the Vic class, the class diagram shows the
Vic class too. The solid line with the triangular head signals that SmartVic inherits from
Vic. UML calls it a generalization.

The three arrows in the class diagram can be read as follows:
1. BringThreeBack uses Vic.

2. BringThreeBack uses SmartVic.
3. SmartVic is a kind of Vic.

BringThreeBack |- - - - - - - - - - - - - = - - - — }3 Wi

O

A"ﬁ.

Smartic
__________________ }

riesael,
moveTakel)
backPutr)

Figure 2.10 UML class diagram for BringThreeBack

2-27 Java Au Naturel by William C. Jones 2-27

UML allows you a great deal of choice in how much detail you choose to show in a class
diagram. The class diagrams shown in this section are at the minimum level of detail.
Chapter Three describes some additional choices you have, but you should first practice
this minimume-level kind of class diagram for a while, defined as follows:

1. Write down a list of all of the methods mentioned in the class or classes you want to
diagram (in the examples, we only want to diagram one application program).

2. Draw a rectangle for each class in which one or more of those methods are defined.

3. Divide the rectangle horizontally into three parts, with the name of the class in the top
part.

4. List each method from step 1 in the bottom part of the rectangle for the class that
contains its definition. Underline mai n and other class methods (such as r eset).

5. Draw a solid-line-triangle-arrowhead from a class to its superclass if both appear in
the diagram.

6. Draw a dotted-line-arrow from a class to each other class (besides its superclass)
whose methods or instances it mentions.

UML is also used to diagram individual objects. The earlier Figure 2.8 is a UML object
diagram. For that diagram, an alternate way of representing the object pamrefers to is
to put pam Vi c in the top part of the box and omit the arrow from pam That is, a
rectangle that represents a particular Vic object has : Vi ¢ or vari abl e: Vi ¢ underlined
in the top part of the rectangle; a rectangle that represents a class just has the class
name and it is not underlined.

Client-server relations

When one class provides services (generally methods) that another class uses, the first
class is said to be a server for the second class, and the second is said to be a client of
the first. In this client-server relation, for instance, the client may have parameters that
are instances of the server class, or may return instances of the server class, or may use
the methods of the server class locally within its coding. Both dependencies and
generalizations are kinds of client-server relations.

Each method that provides a service should have a descriptive comment saying what its
effect is in all situations in which the method can be called (except when the name of the
method alone makes it quite clear). This is the specification for the method. A faultin a
program (colloquially known as a bug) is a failure of a method to do in some situation
what its specification says it does in that situation.

A precondition on a method states a condition that must be true when the method is
called. If some method M calls a method P when P's precondition is false, then it is a
bug in M, not in P. Essentially, a precondition shifts the responsibility for verifying
something from the called method to the calling method. So it is a deficiency in P to
verify its preconditions and a fault in M to not verify P's preconditions. An implied part of
each method's specification is that it does not call any method in a situation when the
called method's precondition is false.

For example, if the coding for a method beginswith if (! seesSlot()) say...
then its specification should not say "Precondition: its current slot exists"; it should
instead say "If its current slot does not exist, say... otherwise...".

Exercise 2.39 Draw the UML diagram for the program in Listing 2.1.
Exercise 2.40* Draw the UML diagram for the program of Exercise 2.9.

2-28 Java Au Naturel by William C. Jones 2-28

2.10 Analysis And Design Example: Complex Conditionals

Perhaps you have a need to write a method to add to a subclass of Vic, to remove the
first two CDs from a sequence known to have at least two CDs in the next three slots.
Since this is not a simple thing to do, you should begin with an analysis of the situation:

Question 1: What do you do first? Answer: It depends.

Question 2: Depends on what? Answer: On whether this first slot contains a CD.
Question 3: What do you do first if it does? Answer: Take the CD from there and then
move on to the second slot.

Question 4: What do you do first if it does not? Answer: Move on to the second slot.

This gives you the following overall if-else design for your logic:

If the first slot contains a CD then. ..
Take that CD out of the slot and nbve to the second sl ot.
// do nore in Case 1
O herw se. ..
Move to the second slot.
// do nore in Case 2

In both cases, you end up in the second slot. Next decide whether what you do in Case 1
is the same as what you do in Case 2. If that were so, you would handle that common
case after the if-else statement (change the design by removing the two comments and
putting // do nore either case atthe end). Butthatis not so.

Now you figure out what comes next in each case. Case 2 is the easier situation, since
at this point you know a CD is in each of the next two slots (remember, the precondition
is that you have at least two CDs in the three slots, and there was no CD in the first slot).
So you know in Case 2 what actions to take without testing any more conditions:

/1 do nmore in Case 2 expands to:
Take the CD fromthe second slot.
Move to the third slot and take the CD fromthat slot.

In Case 1, you also have to move on to the second slot, because you have one CD left to
find and it is in one of the next two slots. After you move on to the second slot, you
realize what you do again depends on what you find. Analyze it with the same four key
guestions:

Question 1: What do you do first? Answer: It depends.

Question 2: Depends on what? Answer: On whether this second slot contains a CD.
Question 3: What do you do first if it does? Answer: Take the CD from there.
Question 4: What do you do first if it does not? Answer: Move on to the third slot and
take the CD from that slot.

From this you can develop a design of the logic. Note that the design is in English, not in
Java. You need to review the design and make sure it is logically correct and covers all
of the possibilities. This is much easier to do in a language you know well, e.g., English.

/1 do nmore in Case 1 expands to:
If the second slot contains a CD then...
Take the CD fromthat slot.
O herw se. ..
Move to the third slot and take the CD fromthat slot.

You should combine the parts of this design into one unit so you can study it further
before you try to translate it to Java. The accompanying design block does this. One

2-29 2-29

Java Au Naturel by William C. Jones

small change is made: Since Case 2 turned out to be shorter and simpler than Case 1, it
is presented first in the design. Putting the simpler alternative first is normally clearer.

DESIGN of takeTwoOfThree
1. If you do not see a CD in the current slot then...
la. Move on to the second slot and take that CD.
1b. Move on to the third slot (there must be a CD in that slot).
2. Otherwise...
2a. Take the CD in the current slot.
2b. Move on to the second slot.
2c. If you do not see a CD in the second slot, then...
Move on to the third slot (there must be a CD in that slot).
3. Take the CD in the current slot (which is either the second or the third slot).

After you work out the design in this form, you need to read it over several times, even
recite it out loud and listen to it, to make quite sure there are no errors in the logic. Read
again the specification of what the method is to do, to be sure your design fulfills the
requirements. This can then be translated into Java as the method shown in Listing 2.11.
Figure 2.11 shows which statements are actually executed for the three possibilities.

Listing 2.11 An instance method for a subclass of Vic

[** Take the first two avail abl e CDs.
* Precondition: the first 3 slots contain at |east 2 CDs. */
public void takeTwoOf Three()
{ if (! seesCX)) /] design step 1
{ nmoveOn(); [/l design step la
t akeCD() ;
noveOn() ; /] design step 1b
}
el se /] design step 2
{ takeC(); [/l design step 2a
moveOn() ; /1 design step 2b
if (! seesC)) /1 design step 2c
moveOn() ;
}
t akeCD() ; // design step 3
Y o/l

/Il THE CODING CDIN1°"AND 2 [CDIN 1°T AND 3° | CD IN 2"° AND 3°°
if (! seesCD()) I seesCD() is false I seesCD() is false I seesCD() is true
{ moveOn(); moveOn();
takeCD(); takeCD(); // slot 2
moveOn(); moveOn();
}
else
{ takeCD(); takeCD(); // slot 1 takeCD(); // slot 1
moveOn(); moveOn(); moveOn();
if (! seesCD()) I seesCD() is false I seesCD() is true
moveOn(); moveOn();
}
takeCD(); takeCD(); //slot2 | takeCD(); /I slot3 | takeCD(); //slot3

Figure 2.11 Three possible sequences of actions for Listing 2.11

2-30 Java Au Naturel by William C. Jones 2-30

Now read this section down to here one more time and note well the process described
here. For all but the simplest Java methods, if you apply this process to code a method
to perform a given task, you will find that you spend somewhat longer before you get to
the coding part but that you spend far less time getting the coding part right.

The Dangling Else Trap

Look at the following two methods that could be in a subclass of Vic. The first three lines
of the bodies are the same in both cases; they differ beginning with el se:

public void sayWenSl ot Enpt y() public void sayWhenNoSl ot ()

{ if (seesSlot()) { if (seesSlot())
if (seesCD()) if (seesCD())
t akeCD() ; t akeCD() ;
el se el se
Vic.say ("No CDI'"); Vic.say ("No slot!");
} | | ======================= } | | =======================

From the indentation and the method names, it is clear that the first method is to print a
message only when there is a slot that contains a CD. And the second method is to print
a message only when there is no slot at all (i.e., the Vic is at the end of its sequence).
The first method behaves as it is intended. But the second method behaves just like the
first method except for the words in the message.

General principle: The compiler pays no attention to indentation. Indentation is only to
make it easy for you and other people to understand your logic. And the compiler does
not understand the words inside the calls of Vi c. say. So the compiler has no choice
but to interpret these two methods the same; they have the same structure. The
compiler’s rule in such a case is to match the el se with the most-recently occurring
if.

Caution It is best nevertowrite i f (Condition) if inyour logic.
Rephrase it; if nothing else, put braces around the subordinate if-statement.
Doing this guarantees you will never fall prey to this Dangling Else Trap.
Applying this rule to the two preceding examples gives the following (mark
ye well the position of the braces):

public void sayWenSl ot Enpt y() public void sayWhenNoSl ot ()

{ if (seesSlot()) { if (seesSlot())
{ if (seesCX)) { if (seesCX))
t akeCD() ; t akeCD() ;
el se }
Vic.say ("No CDI'"); el se
} Vic.say ("No slot!");
} | | ======================= } | | =======================

Multiway selection format

The ver bosePut CD method shown in Listing 2.12 has an if-else structure that occurs
with some frequency in developing methods. This logic prints a different message in
each of four different cases. Only in the fourth case does it actually put a CD in the slot.

The indentation used in this method is the Multiway Selection format. It makes it clear
to the reader that exactly one of the four cases will be selected. Standard indentation
would require two more lines and indent two additional levels. That is not as readable.

2-31 Java Au Naturel by William C. Jones 2-31

Listing 2.12 An instance method illustrating multiway selection

[** Try putCD(). Print a description of the situation. */

public void verbosePut CIX) /1 in a subclass of Vic
{ if (! seesSlot())
Vic.say ("There is no slot");
else if (seesC())
Vic.say ("The slot is full");
else if (! stackHasCD())
Vic.say ("I have no CD");
el se
{ putCX);

Vic.say ("M ssion acconplished!");

y 1

Some programming languages offer a special multiway selection statement using e.g. the
special word ELSIF. The designers of Java apparently felt programmers could just use
the normally-two-way if-else with the modified indentation -- form follows function.

braces after an if- or while- condition, or method heading, or the equivalent.

One is the Allman style, used in this book. The other is the Kernighan &

Ritchie style, where the opening brace is placed at the end of the line that has
the i f orwhi | e or method name. Itis a matter of personal preference which one you
use. ltis also a matter of preference whether you have a blank line (other than perhaps
the beginning brace) between the controlling phrase and the subordinate part. However,
it is wise to use the Allman style until late in your first course of programming, because
beginners find it easier to have their braces match up when they are vertically lined up
with each other and everything between is indented.

Q Programming Style There are two commonly-used styles in the placement of

Exercise 2.41 Write a method publ i ¢ voi d downShi ft () for a subclass of Vic: The
executor takes the CD from the current slot and puts it in the very next slot. However, do
not do anything if there is no current slot or no CD in it, and leave the CD on the stack if
there is no following slot or it has a CD in it already.

Exercise 2.42 Rewrite the answer to Exercise 2.21 in the multiway selection format.
Pay close attention to indenting.

Exercise 2.43** Write an application program that moves the first available CD in the
first sequence of slots to the stack. Do not go any further in the sequence than
necessary. Precondition: The sequence is known to have at least one CD in its first four
slots.

Exercise 2.44** Revise the t akeTwoOF Thr ee method in Listing 2.11 to remove all
preconditions.

Exercise 2.45* Look ahead to Listing 3.10 and rewrite the body of the lengthy while-
statement in the multiway selection format. Pay close attention to indenting.

2-32 Java Au Naturel by William C. Jones 2-32

2.11 Review Of Chapter Two

Listing 2.5, Listing 2.9, and Listing 2.10 illustrate almost all Java language features
introduced in this chapter.

About the Java language:

>

>

The compiler ignores anything between /* and */, even over several lines. By
contrast, the compiler ignores anything after // up to the end of the physical line.
You cannot "run" an object class that has no main method. You can only "run" a
class with j ava C assNanme when the class has a main method to run. You may
test out an object class X (i.e., a class with instance methods) by executing some
other class's main method that creates objects of type X and sends them messages.
The words t r ue and f al se are constants that indicate the only two possible
boolean values. They are called "reserved words" in Java: You cannot use them to
name a method, variable, or class, just as with the keywords bool ean and r et ur n.
A condition is an expression whose value is either t r ue or f al se.

The symbol for "not" is an exclamation point, for "and" is &&, and for "or"is || . In
expressions involving two or more boolean operators, you should use parentheses
liberally to make sure the meaning is clear. If the first operand x istruein x || v,
orisfalsein x && vy, then the second operand y is not evaluated, and the result of
the expression is the value of x. This is short-circuiting.

See Figure 2.12 and Figure 2.13 for the remaining new language features.

St at enent G- oup means zero or more statements in sequence.

(Condi ti on) statement that executes the
St at enent subordinate Statement if the Condition
is true

i f

(Condi ti on) statement that executes only the first
St at enment Statement if the Condition is true, but

el se executes only the second Statement if

St at enent the Condition is false

{
}

St at ement G oup statement that can replace the one
Statement in ifs and if-elses and others

Cl assNane. Met hodNane (Expression); | statement that calls a class method

with one parameter

bool ean Vari abl eNaneg; statement that creates a true-false
variable
Vari abl eNane = Condition; statement that assigns a value of true

or false to a boolean variable

return Condition; statement that returns a true-false

value; it terminates the method it is in

Figure 2.12 Statements introduced in Chapter Two

publ i c bool ean Met hodNane() declaration of a method that returns a
{ Statenent&Goup true-false value, i.e., a Condition
}

Figure 2.13 Method declaration introduced in Chapter Two

Caution Do not put any statement directly after a r et ur n statement if it is
appropriately indented the same (i.e., is subordinate to the same condition).
Such a statement can never be executed.

2-33 Java Au Naturel by William C. Jones 2-33

Other vocabulary to remember:

>

>

The expression you put in the parentheses of a method call is a parameter, also
known as an argument of the method call.

The parts of an if-statement or if-else statement are named the condition (in
parentheses after i f), the first subordinate part (directly after those parentheses),
and the second subordinate part (after el se if present). If one of the subordinate
parts has two or more statements, it should be enclosed in braces (to make it a block
statement).

The javadoc standard for commenting methods puts a description of each public
method just before the method heading, beginning with / ** and ending with */.
The precondition for a method is what has to be true when the method begins
execution, in order that the method produce the expected result.

The translation of a particular design into a compilable class is called coding.
"Design before you code" is as basic a principle as "Think before you act.”

An action method changes the state of one or more objects but does not return a
value. A guery method returns a value but does not change the state of any object.
Try to avoid methods that do both.

You can convey the information that a choice is being made from among three or
more alternatives by putting an i f immediately after el se on the same physical
line, rather than indented on the following line. This multiway selection format gets
around the limitations of using a language feature which offers only a choice from two
alternatives.

About Vic methods (developed for this book):

new Vi c() creates a Vic object.

You can send four action messages to a Vic: sam put CD(), sam t akeCX),

sam nmoveOn(), and sam backUp() .

You can ask two questions of a Vic: sam seesCD() and sam seesSl ot ().

You have three Vic class methods: Vi c. stackHasCD(), Vic.reset(args),
and Vi c. say("what ever"). Thereset method uses whatever strings of
characters follow j avac ProgranName on the command line to initialize the
sequences of CDs. But a random arrangement is used if there are no such
command-line arguments or the r eset method is not executed until after some Vic
object has been created.

If sam seesSl ot () isfal se,thensam put CD(), samt akeC(),

sam moveOn(), and sam seesCD() all cause the program to fail (i.e., gracefully
terminate execution). Also, the backUp message causes the program to fail if the
Vic object is positioned at its first slot. You should avoid letting this happen. If you let
it happen, your program is not robust, since it does not handle unexpected input
well. Ideally, all application programs should be written so that they cannot fail.

About UML notation:

>

>
>

>

A UML class diagram uses class boxes -- rectangles divided into three parts. The
top part has the class name and the bottom part lists any of its method calls you wish
to mention, with mai n and other class methods underlined.

A dependency of the form X uses Y is indicated by an arrow with a dotted line.

A generalization of the form X is a ki nd of Y isindicated by an arrow with a
solid line and a big triangular head.

A UML object diagram also uses three-part rectangles. The top part has a colon
followed by the class name, optionally with the name of the variable that refers to it
before the colon. The middle part generally lists attributes of the object.

2-34

Java Au Naturel by William C. Jones

Answers to Selected Exercises

21

2.2

2.3

2.6

2.7

2.8

2.9

2.13

public class ThirdToFirst
{ public static void main (String [] args)

{

}

Vic.reset (args);

Vic cat;

cat = new Vic();
cat.moveOn(); // to slot 2
cat.moveOn(); // to slot 3
cat.takeCD();

cat.backUp(); // to slot 2
cat.backUp(); // to slot 1

cat.putCD();

public class PutThree
{ public static void main (String [] args)

{

}

Vic.reset (args);
Vic cat;

cat = new Vic();
cat.putCD();

cat.moveOn(); // to slot 2
cat.putCD();
cat.moveOn(); // to slot 3

cat.putCD();

public class TakeSecondAndFourth
{ public static void main (String [] args)

{

}

Vic.reset (args);

Vic cat;

cat = new Vic();
cat.moveOn(); // to slot 2
cat.takeCD();

cat.moveOn(); // to slot 3
cat.moveOn(); I to slot 4
cat.takeCD();

public static void main (String [] args) // rewrite of Exercise 2.1
{ Vic.reset (args);

SmartVic cat;

cat = new SmartVic();

cat.moveOn();

cat.moveTake(); // to slot 3

cat.backUp();

cat.backPut(); // to slot 1

}

Put "cat.moveTake();" in place of the two lines beginning at the comment // to slot 2
and also in place of the two lines beginning at the comment // to slot 4

public void movePut()
{ moveOn();
putCD();

}
public class ThirdToFifth
{ public static void main (String [] args)

{

}

Vic.reset (args);
SmartVic cat;
cat = new SmartVic();

cat.moveOn(); // to slot 2
cat.moveTake(); // to slot 3
cat.moveOn(); I to slot 4
cat.movePut(); // to slot 5

Replace the last two statements by the following:
sue.moveOn();
if (sue.seesSlot())
{ sue.takeCD();
sue.backPut();

}

2-34

2-35 Java Au Naturel by William C. Jones

2.14 public class TakeFourthAndFifth
{ public static void main (String [] args)
{ Vic.reset (args);

Vic cat;

cat = new Vic();

cat.moveOn();

cat.moveOn();

cat.moveOn(); / to slot 4

if (cat.seesSlot())

{ cat.takeCD();
cat.moveOn(); // to slot 5
if (cat.seesSlot())

cat.takeCD();

}

2.15 public void swapTwo()
{ if (seesSlot())
if (seesCD())
{ moveOn();
if (seesSlot())
if (seesCD())
takeCD();
backUp();
takeCD();
moveOn();
putCD();
backUp();
putCD();

}

}
221 if (sam.seesCD())
sam.moveOn();
else
if (Vic.stackHasCD())
sam.putCD();
else
sam.moveOn();
2.22 public void shiftForward()
{ if (seesCD())
moveOn();
else
{ moveOn();
if (seesSlot()) /[this test must be made first
if (seesCD())

{ takeCD();
backUp();
putCD();
moveOn();

}

}
2.24 public boolean hasNoSlot()
{ if (seesSlot())
return false;
else
return true;

}
2.25 public boolean canTakeCD()
{ if (seesSlot())
if (seesCD())
return true;
return false;

2-35

2-36

2.26

2.30

231

2.34

2.35

2.36
2.39

241

2.42

Java Au Naturel by William C. Jones

public boolean canPutCD()
{ if (! seesSlot())
return false;
if (seesCD())
return false;
if (stackHasCD())
return true;
else
return false;

public boolean hasTwoOnStack()
{ boolean result;
if (! stackHasCD())

result = false;

else

{ putCD();
result = stackHasCD();
takeCD();

return result;

This is just the opposite of the preceding exercise, so replace its two assignments by:

result = true;

result = ! stackHasCD();

public boolean canTakeCD()

{ return seesSlot() && seesCD();

public boolean canPutCD()

{ return (seesSlot() && ! seesCD()) && stackHasCD();

}

The empty parentheses are missing at the end of the sam.seesSlot method call.
Also, you must put the two statements subordinate to if inside matching braces.

It is the same as Figure 2.9 except that you remove three items from the Vic box

(reset, seesSlot, seesCD) and add backUp(). Also replace TwoToFour by MoveOne.

public void downShift()
{ if (seesSlot() && seesCD())

{ takeCD();
moveOn();
if (seesSlot())
putCD();
}

}

if (sam.seesCD())
sam.moveOn();

else if (Vic.stackHasCD())
sam.putCD();

else
sam.moveOn();

2-36

3-1 Java Au Naturel by William C. Jones 3-1

3 Loops and Parameters

Overview

The commands in the Vic class operate physical clamps and springs to move the CDs
around. In the context of this Vic software, you will learn about several new Java
features:

Section 3.1 presents the while-statement, which can be used to send a Vic to the end
of its sequence. In general, a while-statement allows you to repeat an action many
times.

Section 3.2 explains the equal s method in the Sun standard library String class.
Sections 3.3-3.6 introduce more language features: private methods, the default
executor, and parameters for passing extra information to a method. You only need
study through Section 3.6 to understand the material in the rest of this book.

Sections 3.7-3.8 describe and illustrate a highly reliable method for developing the
logic of complex methods relatively quickly and with few errors.

Sections 3.9-3.10 cover enrichment topics: Turing machines and Javadoc tags.

3.1 The While Statement

The fil | Four Sl ot s method that follows asks the executor to put a CD in the next four
available slots, except that the four if-statements make the method stop early if the
executor runs out of slots:

public void fill Four$Slots() /1 in a subclass of Vic
{ if (seesSlot())
{ putCX();
moveOn() ; /1 nove to slot 2
if (seesSlot())
{ putCX);
moveOn() ; /1 nove to slot 3
if (seesSlot())
{ putCX);
moveOn() ; /1 nove to slot 4
if (seesSlot())

put CO() ;

Three of the four if-statements have a block statement for the subordinate part, i.e.,
several statements enclosed in a matching pair of braces. When an if-condition is false,
none of the statements within its block will be executed. Clearly, the method would be
quite lengthy if you wanted to put a CD in each of the first six slots. And what if you
wanted to put a CD in every single slot?

The following method contains a new Java statement that repeats its two inner
statements any number of times, until the condition seesS| ot () becomes false. It fills
every slot possible. Note that it is far shorter than f i | | Four Sl ot s, even though it does
far more:

3-2 Java Au Naturel by William C. Jones 3-2

public void fillSlots() /1 in a subclass of Vic
{ while (seesSlot())
{ putCX);
moveOn() ;
}
} | | =======================

The usual format of a while-statement is:

whi I e (Condition)
{ Statenent...

}

Subordinate statements

The statements in the block are subordinate to the
while. If you have only one subordinate statement in the
block you may omit the braces, as for an if-statement.
Note that we boldface the word whi | e as a signal it
requires a subordinate statement.

The condition in the parentheses after whi | e is the
continuation condition. The meaning of a while-
statement can be expressed as follows:

1. If the continuation condition is true, then
1la. Execute all subordinate
statements in sequence. while (condition)
1b. Repeat this process from Step 1. statement

Figure 3.1 gives a pictorial description of this
action. Figure 3.1 Flow-of-control for
the while-statement

Examples of the while-statement

The t oggl eCDs method in Listing 3.1 gives another illustration of the while-statement.
While moving to the end of the sequence, it switches the status of each slot by (a)
removing a CD if the slot contains one, otherwise (b) putting a CD in the slot if the stack
contains one.

Listing 3.1 A method that uses the while statement

public void toggl eCDs() /1 in a subclass of Vic
{ while (seesSlot())

{ if (seesCX))

t akeCD() ;
el se
put COX() ;
moveOn() ;
}
Yy o/l

while-statement in t oggl eCDs would do exactly the same thing, but it is not
good style to have the same statement at the end of both alternatives of an if-

y Programming Style The following statement as the subordinate part of the
else statement. Such a statement should be "factored out" as in Listing 3.1:

3-3 Java Au Naturel by William C. Jones 3-3

if (seesCD()) /1 unfactored if-el se statenent

{ takeCD();
moveOn() ;

}

el se

{ putCX();
moveOn() ;

}

The following main method empties the first slot of every sequence. Each execution of
sequence = new Vi c() makes sequence refer to the next sequence of slots. When
sequence. seesSl ot () isfal se, you have no more sequences to process:

public static void main (String[] args)
{ Vic sequence;
sequence = new Vic();

whi | e (sequence. seesSl ot ())
{ sequence.takeCX);
sequence = new Vic();

Programming Style It is good style to indent the subordinate part of an if-

statement or while-statement by one extra tab position. That makes it clear to

someone who reads the program what statements are subordinate to what

other statements. This is especially useful with if-statements within if-
statements or within while-statements. Note that all of the source code in this book
indents after each boldfaced word.

L anguage elements
A Statement can be: while (Condition) Statement
or: while (Condition) { StatementGroup }

Exercise 3.1 Write a method publ i ¢ voi d renmpoveAl | CDs() for a subclass of Vic:
The executor removes all the CDs from its slots and puts them on the stack. Leave the
executor at the end of its sequence of slots.

Exercise 3.2 Write a method publ i ¢ voi d tolLast Sl ot () for a subclass of Vic: The
executor advances to the last slot in its sequence. Precondition: The executor has at
least one slot somewhere.

Exercise 3.3 Write a method publ i ¢ voi d t akeOneBef ore() for a subclass of Vic:
The executor backs up until it sees a slot with a CD in it, then takes it. Precondition:
There will be a filled slot somewhere before the current position of the executor.
Exercise 3.4* Write an application program that fills the first slot of every sequence of
slots for which the first slot is empty. Stop when the stack becomes empty.

Exercise 3.5* Write a method public void fill OneSl ot () for a subclass of Vic:
The executor advances to the next available empty slot and puts a CD in it. If this is
impossible, just have the executor advance to the next available empty slot or, if all slots
are filled, to the end of the sequence. "Next available" includes the current slot.

Note: All instance methods in the exercises for Chapter Three that ask you to do
something for all of the executor's slots apply only to the current slot and those after it.
For instance, Exercise 3.1 means the executor removes all CDs from this and later slots.
You must ignore any previous slots, since you have no way to tell whether they exist.

3-4 Java Au Naturel by William C. Jones 3-4

3.2 Using The Equals Method With String Variables

The fil | SI ot s method of the previous section leaves the Vic at the end of its sequence
of slots. It cannot back up to the beginning, because it would not know when to stop.
That makes it a not very useful Vic. This can be fixed by having the executor make a
note of its current position before going through the sequence to fill the slots. Then it will
be able to back up to that initial position.

The method call sam get Posi ti on() returns an object that records the current
position of the Vic named sam This object is a string of characters. String is the name of
the Sun standard library class for such objects. The String class contains a method for
testing whether two Strings are equal. These new methods are described in Figure 3.2.

aVi c. get Position()

produces a String object recording the current position of the object referred to by
avic.

aString. equals (someQ herString)

tests whether one String is equivalent to another. The String that getPosition()
produces equals another String it has produced whenever they represent the same
position in the same sequence, even if the actual String objects are different.

Figure 3.2 Two query methods for use with positions in a sequence

Now the fi | | S| ot s method can be revised so the executor is at the same position in its
sequence at the end of execution that it was in at the beginning of execution. Put these
two statements at the beginning to make a note of the current position in a variable:

String spot;
spot = getPosition();

Then put these statements at the end of the fi | | Sl ot s method, after the while-
statement that moves the executor down to the end of the sequence:

while (! spot.equals (getPosition()))
backUp();

This logic checks whether spot (the position when fi | | SI ot s began execution) is the

same as the current position (given by the call of get Posi ti on()) and if not, backs up
by one slot and then repeats the check for equality. When they are equal, the loop stops
(a loop is the repeated execution of a group of statements; an iteration of a loop is one

such execution of the group of statements).

The hasSomeFilledSlot method

We will define two new methods so you can move a Vic object down its sequence of slots
to the last slot that contains a CD, assuming there is such a slot. You will be able to have
logic in a program something like the following:

i f (sam hasSoneFilledSlot())
sam goToLast CD() ;

3-5 Java Au Naturel by William C. Jones 3-5

The hasSoneFi | | edSl ot method is to send a message that asks the executor whether
any slot from its current position on down has a CD in it. An initial sketch of a plan to do
this is: The executor goes down its sequence until it sees a filled slot (in which case it
returns t r ue) or it runs out of slots to look in (in which case it returns f al se). But it
returns to its original position before returning the answer to the question. You can then
refine this initial sketch as shown in the accompanying design block.

DESIGN of hasSomeFilledSlot

Make a note of the current position.

Move down the sequence until you see a filled slot or you run out of slots.

Let val ueToRet ur n record whether, at that point, there is still a slot left.
Back up until you get to the original position as of the start of this method.
Return the value in val ueToRet ur n as the answer to the question, "Does the
sequence have some filled slot?"

agbhwdE

This logic works because (a) if val ueToRet ur nist r ue, the first loop stopped before
the end, which can only be because the executor stopped at a slot with a CD in it; and
(b) if val ueToRet ur n is f al se, the executor must not have seen any CD to cause it to
stop early. The design is implemented in the upper part of Listing 3.2, which defines a
subclass of the Vic class. Figure 3.3 shows a sample execution of this method in detail.

Listing 3.2 The VicPlus class of objects

public class VicPlus extends Vic

{

[** Tell whether any slot here or |later has a CD. */

publ i c bool ean hasSoneFi || edSl ot ()

{ String spot; /] design step 1
spot = getPosition();
while (seesSlot() & ! seesCl()) /] design step 2
moveOn() ;
bool ean val ueToRet ur n; /] design step 3

val ueToReturn = seesSl ot ();
while (! spot.equals (getPosition())) [/l design step 4
backUp() ;
return val ueToRet ur n; /] design step 5
|

/[** Move to the last CD at or after the current position. But
* if there is no such CD, stay at the current position. */

public void goToLast CDX)

{ String spot; /] design step 1
spot = getPosition();
whil e (seesSlot()) /] design step 2

{ if (seesC())
spot = getPosition();
noveOn() ;

while (! spot.equals (getPosition())) /] design step 3
backUp() ;

} oI

3-6 Java Au Naturel by William C. Jones 3-6

When sam hasSomeFiledSiol) is called: =am E
CDw4
atack Co# CcD#E2 e e e ORI -

=am
After String spaot; E
spot = getPosition);

CDfa spat =
atack Co# CcD#E2 e e e CO#RI -

After while (seesSIt0) &8 | seesCD()) =am E

mawengl;
CD#d ot -
stack COo# D2 - e e CORS -
A
After hoolean valueToReturn; E
valueToReturn = seesSiat();
CD#d ot -
IueToRet 1
VALETOREIT ook | CO#1 CD#2 e e e o) < J—
A
After while (! spot eguals (getPosition(1 E
backUpl;
walueToReturn COa#4 spot =t

tack COo# CD#EZ2 e e e CO#s -

Figure 3.3 Execution of hasSomekFilledSlot

The goToLastCD method

The goToLast CD method advances the executor to the last slot that contains a CD. The
logic to do so is a bit tricky. How do you go to the last CD? When you see a CD as you
go down the sequence, you will not know whether it is the last one. A reasonable plan is
to note its position and go further to see if there is another. If you do not see another, go
back to the position marked. But if you do see another, forget about the earlier position
and mark the later position instead. You need to see a description in ordinary English of
how to do this, shown in the accompanying design block. The coding is in the lower part
of Listing 3.2.

DESIGN of goToLastCD
1. Make a note of the current position in a variable; call it spot .
2. For each slot in the sequence from this position forward, do...
If the slot you are at contains a CD, then...
Change spot (the note) to indicate this new position instead.
3. Back up to the last position that was stored in spot .

Caution Always review the logic of each while-loop you write to be sure it
will terminate eventually when executed. Nota Bene: Control-C in the
terminal window kills the entire program. This is useful to know when you
run a program with a loop that never terminates.

L anguage elements
A Condition can be: MethodName (Expression)
or: VariableName . MethodName (Expression)

3-7 Java Au Naturel by William C. Jones 3-7

Exercise 3.6 How would you revise goToLast CDin Listing 3.2 so the executor
advances to the last empty slot in its sequence?

Exercise 3.7 How would you revise hasSoneFi | | edSl ot in Listing 3.2 so the executor
tells whether at least two slots at or after the current slot are filled?

Exercise 3.8 Explain why the assignment to val ueToRet ur n in Listing 3.2 must not be
replaced by val ueToReturn = seesCI().

Exercise 3.9* Write a method public void fillFirstEnptySlot() fora subclass
of Vic: The executor puts a CD in its first empty slot. Leave the position of the executor
unchanged. Precondition: It has an empty slot and a CD is on the stack.

Exercise 3.10* Rewrite the hasSomneFi | | edSl ot method in Listing 3.2 to not use any
boolean variable.

Exercise 3.11** Write a method public void fill Last EnptySl ot () fora
subclass of Vic: The executor puts a CD in its last empty slot, but only if it has an empty
slot and has a CD on the stack. Leave the position of the executor unchanged.

3.3 More On UML Diagrams

Suppose you want to have an application program that moves all the CDs in the first
sequence of slots up to the front of the sequence. A reasonable plan is shown in the
accompanying design block, assuming the stack is empty (an exercise shows how to do
this when the stack is not known to be empty).

DESIGN of MoveToFront

Create a Vic for the first sequence of slots; name it chun.

Record its current position (the first slot) in a variable named spot .

Send chun down the sequence of slots, placing all CDs that it sees onto the stack.
Move chun back to the beginning of the sequence, to the position stored in spot .
Send chun down the sequence of slots, putting a CD in each slot, until chun gets to
the end or chun runs out of CDs in the stack.

aprwN R

Each step of the design translates quite easily into just a few Java statements. A Java
implementation of this design is in Listing 3.3 (see next page). Note that calls of Vi c. say
are inserted where appropriate, even though the design does not mention them. This
illustrates the fact that people sometimes add to a design during implementation.

What classes do

The Vic class illustrates three key functions of classes, which you will see time and again:

1. It defines the behaviors an individual Vic object can have (e.g., t akeCD and
nmoveOn).

2. ltserves as a factory for objects, since it allows the construction of new Vic objects
(by calling on new Vi c()).

3. It defines class methods that relate to Vic objects as a group, not to one individual Vic
object (e.g., say, stackHasCd, and reset).

3-8 Java Au Naturel by William C. Jones 3-8

Listing 3.3 An application program using a Vic object

public class MoveToFront

/** Move all the CDs in the first sequence of slots up to the
* front of the sequence. Precondition: stack is enpty. */

public static void main (String[] args)

{ Vic chun; /] design step 1
chun = new Vic();
String spot; /] design step 2

spot = chun. get Position();

whi | e (chun. seesSl ot ()) // design step 3
{ chun.takeCD();

chun. moveOn() ;
}

Vic.say ("All CDs are now on the stack.");

while (! spot.equals (chun.getPosition()))// design step 4
chun. backUp() ;

whi l e (chun.seesSlot() &% Vic.stackHasCD())// design step 5
{ chun. put CIX);

chun. moveOn() ;
}

Vic.say ("The first few slots are now filled.");
|

Going further with UML diagrams

Figure 3.4 is the class diagram for this MoveToFront program. It illustrates the two
remaining notations for creating UML class diagrams this book uses:

1. You may give the types of parameters in parentheses after the method name if you
choose, e.g., the say and equal s methods in Figure 3.4.

2. You may give the type of value a method returns if you choose (standard UML
notation puts it after the parentheses, in contrast to Java method headings), e.g., the
get Posi ti on and seesSl ot methods in Figure 3.4.

foveToFront Wic

new [

getPosttion) : String
seessiot] 1 hoolean
equals { String) © boolean maeisng)

backUp)

putCO)

takeCDn)

say [String)
stackHasCD() boolean

main() |- ----- =] String

Figure 3.4 UML class diagram for MoveToFront

Exercise 3.12 The MoveToFront program has the CDs that were initially nearer the front
of the sequence end up nearer the end of the sequence. Revise the program so that
CDs that were initially frontwards remain so. Hint: Take CDs while backing up.

3-9 Java Au Naturel by William C. Jones 3-9

Exercise 3.13 Write a query method publ i ¢ bool ean I astlsFilled() fora
subclass of Vic: The executor tells whether its last slot is filled. Precondition:

seesSl ot () is true.

Exercise 3.14* Write a Finder subclass of Vic with two methods: goToFi r st Enpt y
and goToFi r st Fi | | ed, where the executor advances until it comes to the first empty
slot or the first filled slot, respectively, or to where seesSl ot () is false if necessary.
Exercise 3.15** Add a method publ i ¢ voi d byOnes() to the Finder class of the
preceding exercise: The executor moves one CD at a time to the earliest empty slot that
comes before that CD in the sequence. This gets all the CDs to the front of the sequence
without having more than one extra CD on the stack at a time. This byOnes method
should call on the other two methods in Finder as needed.

3.4 Using Private Methods And The Default Executor

The methods that go through an entire sequence, suchasfill Sl ot s and t oggl eCDs
in Section 3.1, seem to call for a new subclass called Looper (since the methods will
usually involve loops). We develop several such methods in this section and the next.

Initializing a variable when it is declared
Java allows you to combine the declaration of a variable with its initial assignment of a

value. The following three statements illustrate how this language feature can be used.
In each case, the one statement given replaces two statements in the specified listing:

bool ean val ueToReturn = seesSlot(); /1 in Listing 3.2
Vic chun = new Vic(); /[l in Listing 3.3
String spot = chun.getPosition(); /[l in Listing 3.3

Caution A common error is to try to use the value of a variable before you
put a value in it. For instance, you cannot say sam t akeCD() unless you
previously assigned a value to sam, asin sam = new Vi c(). You can
avoid this error if you always assign a value to a variable in the same
statement where you declare it or in the very next statement.

Listing 3.4 (see next page) illustrates the use of this new language feature in the Looper
subclass of the Vic class. This class contains the fil | Sl ot s method discussed in
Section 3.1 plus a cl ear Sl ot sToSt ack method with a very similar logic, since it does
the exact opposite of fill Sl ot s: It has the executor move all the CDs in its slots to
the stack. Study both to make sure you thoroughly understand them.

Private methods

The third method in Listing 3.4, backUpTo, is for convenience; it saves writing out the
loop that backs up, as seen in the two previous listings. You can call backUpTo(x) for
any position value x; the value in x is assigned to soneSpot inside the backUpTo
method. So the loop inthe backUpTo method executes until get Posi ti on()

returns a value that indicates the same spot x indicates.

The backUpTo method will be used only by other Looper methods (more Looper
methods are in the next section). The restriction to Looper methods only is produced by
having the privat e modifier in place of public. A private method cannot be
mentioned outside of the class it is defined in. A method defined as publ i ¢ can be
mentioned in any other class, as long as you supply the executor or other indication of
the class itis in. These two modifiers indicate the "visibility" of the method.

3-10 Java Au Naturel by William C. Jones 3-10

Listing 3.4 The Looper class of objects, some methods postponed

/** Process a sequence of slots down to the end, usually
* wi thout changing the current position of the executor. */

public class Looper extends Vic

{
/[** Fill in the current slot and all further slots
* fromthe stack until the end is reached. */
public void fillSlots()
{ String spot = getPosition();
whil e (seesSlot())
{ putCX();
moveOn() ;
}
backUpTo (spot);
|
/[** Move all CDs in the slots into the stack. */
public void clearSl ot sToSt ack()
{ String spot = getPosition();
whil e (seesSlot())
{ takeC();
moveOn() ;
}
backUpTo (spot);
|
/** Back up to the specified position. Precondition:
* someSpot records a slot at or before the current slot. */
private void backUpTo (String someSpot)
{ while (! someSpot.equals (getPosition()))
backUp() ;
|
}

You cannot call any of the methods in Listing 3.4 without an executor, i.e., an instance of
the class before the dot. So all of these methods are instance methods of the Looper
class.

Using the Looper methods

The new Looper methods in Listing 3.4 let you write the entire body of the earlier Listing
3.3 more simply as follows:

public static void main (String[] args)
{ Looper chun = new Looper();
chun. cl ear Sl ot sToSt ack() ;
Vic.say ("All CDs are now on the stack.");
chun.fill Slots();
Vic.say ("The first few slots are now filled.");

3-11 Java Au Naturel by William C. Jones 3-11

Garbage collection

Inside each of the two public method definitions in Listing 3.4, the String object that
get Posi tion() returnsis assigned to a String variable declared inside the method.
Such a variable is temporary, transient. The variable is created when the method is
called and it is discarded when the method is exited, by coming to the end of the
commands in the method.

When the method says spot = get Position(), the newly-created object has only
spot to refer to it. When the method is exited, no variable at all refers to the String
object. Whenever that happens, the runtime system automatically disposes of the object
so it does not clutter up RAM. This is garbage collection. Programs written in
languages without garbage collection can leave RAM littered with unusable space after
they terminate execution; this is called memory leakage.

A metaphor may help to explain garbage collection: An object is a boat. An object
variable is a metal ring on a river dock to which you can tie a boat. A boat can be tied to
more than one ring at the same time. A statement such as sam = sue has the boat that
is tied up to sue also tie up to sam Whatever boat may have been already tied up to
samis cast off from sam since only one boat can tie up to a ring at a time (the ring is not
big enough for two ropes). If any boat becomes untied from all rings, it floats down the
river, goes over a waterfall, and smashes into kindling at the bottom. The garbage is
then collected by Java's automatic garbage collectors and recycled to make new boats.

The default executor: this

Within the definition of an instance method, you cannot refer to the executor by name,
since it varies depending on the method call. One time you might have the statement
sam fill Sl ot s(), and another time you might have sue. fill Sl ot s(). So inside
the definition of fi | | Sl ot s, you cannot mention either samor sue, because it could be
either of them or some other Looper variable altogether.

Java provides a pronoun for the executor: t hi s always refers to the executor when
used in a statement inside an instance method. For instance, the body of the
fill Sl ots method of Listing 3.4 could be rewritten as follows with the same effect:

public void fillSlots() // illustrating use of this
{ String spot = this.getPosition();
while (this.seesSlot())
{ this.putCX);
this. moveOn();

}
thi s. backUpTo (spot);
} | | =======================

If your main logic executes the statement sam fil | Sl ot s(), then for that execution of
the logicof fill Sl ots, this referstosam If your main logic later executes the
statement sue.fill Sl ot s(), then for that second execution of the logic of
fillSlots, this referstosue. The rule the compiler applies is: If you do not explicitly
state the executor where an executor is required, it supplies the default executor t hi s.

More Looper methods

Listing 3.5 contains the definition of two more Looper methods, with three methods left as
exercises. The t hi s pronoun appears in Listing 3.5 wherever an instance method is
called, to help you remember what it means. But in the future, this book only uses the
optional t hi s when other objects are mentioned in the method; in such a case, this
helps you keep straight which object you are talking about.

3-12 Java Au Naturel by William C. Jones 3-12

The fil | GddSI ot s method in the upper part of Listing 3.5 fills in every other slot
starting with the first one. It does not seem to need a detailed design because you can
just make a small change in the logic of fi | | S| ot s as follows: After that logic moves
on by one slot, insert an if-statement to check that there really is a slot there and, if so,
move on by one extra slot. Figure 3.5 gives an example of what happens when

fill OddSl ot s is called.

Listing 3.5 More methods of the Looper class

/1 public class Looper extends Vic, continued

/[** Fill in every other slot fromthe stack, beginning
* with the current slot, until the end. */

public void fill GddSl ot s()
{ String spot = this.getPosition();
while (this.seesSlot() &% stackHasCD())
{ this.putCX);
this. moveOn();
if (this.seesSlot())
this. moveOn();

}
thi s. backUpTo (spot);
Y o/

[** Tell whether every slot here and |ater has a CD. */

publ i c bool ean seesAl | Fill ed()

{ String spot = this.getPosition(); /] design step 1
while (this.seesSlot() & this.seesC()) /] design step 2
moveOn() ;
bool ean val ueToReturn =! this.seesSlot(); // design step 3
t hi s. backUpTo (spot); [/l design step 4
return val ueToRet ur n; [/l design step 5
|

/[l the following three are | eft as exercises
public void fill EvenSl ot s() { 1}
public bool ean seesQddsFilled() { }
public bool ean seesEvensFilled() { }

When sam fill>ddSlots0) is called, Sami
after String zpot = this. getPosition]);
o = g] O
COd ot -
stack | T CoO#1 CO#E2 - e COR3: -
Fam
Atfter execution of the while loop, %
just befare this backUpTo (spot));
zpot =
<tack CoRs Ch#l CD#E2 - Cogd COEIF -

Figure 3.5 Stages of execution for fillOddSlots

3-13 Java Au Naturel by William C. Jones 3-13

Development of seesAllFilled

The seesAl | Fi | | ed method has the executor tell whether all remaining slots, starting
from the current position, contain CDs. A reasonable plan is in the accompanying design
block. The coding for seesAl | Fi | | ed is in the lower part of Listing 3.5.

DESIGN of seesAllFilled

1. Mark the current position so you can return to it when you have the answer to the
guestion.

2. Go down the sequence until you get to the end or else you see an empty slot.

3. Determine the value to be returned, which is f al se if you are now at an empty slot
andis true otherwise.

4. Go back to the position you had at the beginning of execution of the process.

5. Return the value found at step 3 of this logic.

If seesAl | Fi |l | ed is called when the position of the Vic is already at the end of its
sequence of slots, we still say it is true that all slots are filled, in the vacuous sense that
there is no unfilled slot as a counterexample. This is an application of the computer
science meaning of an assertion of the form All-A-are-B; it may not coincide with the
vernacular meaning.

Caution A common error people make in Java is to put a semicolon right
after the parentheses around a condition, as in i f (what ever); or

whi | e(what ever) ;. That semicolon marks the end of the i f orwhi |l e
statement, so the compiler does not consider the statement on the next line
to be subordinate. A bare semicolon directly after the parentheses around the whi | e or
i f condition counts as a subordinate statement that does nothing. That is rarely what
you want.

L anguage elements

A Statement can be: Type VariableName = Expression ;

You may use "private" in place of "public" in a method heading.

You may use "this" within an instance method to explicitly indicate the executor of the method.

Exercise 3.16 Explain why the following method heading causes a compilation error:
public static void Main (string[] args).
Exercise 3.17 Explain why the following causes a compilation error:

Looper Bob = new Looper();

Vi c spot = Bob.getPosition();

while (! spot.equals (Bob.getPosition())

Bob. moveOn() ;

Exercise 3.18 Rewrite the hasSomeFi | | edSl ot method in Listing 3.2to use thi s
wherever it is allowed.
Exercise 3.19 Write the public void fill EvenSl ot s() method described in the
Looper class. The first slot filled should be the slot after the current position (if it exists).
Callonfill CddSl ot s to do most of the work.
Exercise 3.20 Write the seesCddsFi | | ed method described in the Looper class.
Exercise 3.21 Write the seesEvensFi | | ed method described in the Looper class.
Call on sees(ddsFi | | ed to do most of the work.
Exercise 3.22* Write an application program that tests out your solutions to the two
preceding exercises by calling each one for the first sequence and printing a message
saying what each returned.
Exercise 3.23* Write a Looper method publ i ¢ voi d bri ngBack(): The executor
removes the CD in its current slot, if any, then brings each CD that is later in the
sequence back one slot. Leave the position of the executor unchanged.

3-14 Java Au Naturel by William C. Jones 3-14

Exercise 3.24* Compare the coding of seesAl | Fi | | ed in Listing 3.5 with the coding of
hasSoneFi | | edSl ot in Listing 3.2. Note that the only material difference is the
presence or absence of the not-operator in two places. If both places had the not-
operator, what would be a good name and comment heading for the resulting method?
What would they be if neither place had the not-operator?

Exercise 3.25** Write a Looper method publ i ¢ voi d over O Qut () : The executor
moves each CD in its sequence of slots either (a) to the following slot if there is a
following slot which is empty, or (b) to the stack if not. Leave the position of the executor
unchanged.

3.5 A First Look At Declaring Method Parameters

When one of the public methods in the earlier Listing 3.4 executes the statement
backUpTo(spot), it assigns the value in spot to the soneSpot variable in the
backUpTo method. That is, it executes someSpot = spot, so that someSpot now
refers to the same position spot refers to. Then any test of someSpot 's object inside
the method is by definition a test of the object spot refers to.

A value inside the parentheses of a method call is an actual parameter or argument of
the call. For instance, the actual parameter of backUpTo(spot) isspot, and the
actual parameter of Vi c. say("what ever") is "whatever".

A variable inside the parentheses of a method heading is a formal parameter of the
method. For instance, soneSpot is the formal parameter of the method called by
backUpTo(spot), as defined in Listing 3.4

The hasAsManySlotsAs method

The method call sue. hasAsManySl ot sAs(rut h) is to tell whether the sequence
represented by sue has exactly the same number of slots as the sequence represented
by ruth has. The logic can be designed as shown in the accompanying design block.

DESIGN of hasAsManySlotsAs, with a parameter

1. Make a note of the current position of the executor; store it in t hi sSpot .

2. Repeat the following until either the executor or the parameter has no more slots...
2a. Move both the executor and the parameter forward one slot.

3. Make a note that the value to be returned by this method is t r ue only if both of the

two Vics now have no more slots.

Back up both of them one at a time until the executor gets back to t hi sSpot .

5. Return the value noted in Step 3.

Ea

Listing 3.6 (see next page) contains an implementation of this design. Suggestion:
When you need to write a method whose logic is not immediately obvious, first make a
design similar to the ones you have seen so far in this chapter.

Correspondence of formal and actual parameters

Suppose the statement sue. hasAsManySl ot sAs(rut h) isin a main method. Then
it causes an execution of the boolean method that assigns the value in r ut h to par and
the value in sue to t hi s. So whatevert hi s does is actually being done by sue and
whatever par does is actually being done by r ut h. par is the formal parameter that
corresponds to the actual parameter r ut h. Note: par is short for parameter; this book
uses this name when the context suggests no better name for a parameter.

3-15 Java Au Naturel by William C. Jones 3-15

Listing 3.6 An instance method to compare the lengths of two sequences

public class TwoVi cUser extends Vic

[** Tell whether the executor has exactly the same nunber of
* slots as the Vic paraneter. */

publ i c bool ean hasAsManySl ot sAs (Vic par)
{ String thisSpot = this.getPosition(); /] design step 1
while (this.seesSlot() &% par.seesSlot()) // design step 2
{ this.mveOn();
par . moveOn() ;
}

bool ean val ueToReturn =! this.seesSlot() // design step 3
&& | par.seesSlot();

while (! thisSpot.equals (this.getPosition()))// d. step 4
{ this.backUp();
par . backUp() ;

};et urn val ueToRet ur n; [/l design step 5
|
}
If the main method also contains bi | | . hasAsMany S| ot sAs(t ed), it causes an
execution of the boolean method that gives par the valueint ed and t hi s the value in
bill. Note: bi |l must be a TwoVicUser object, because it is the executor of a method

defined in the TwoVicUser class. Butt ed can be any Vic object, such as a Vic or a
TwoVicUser object. That is, you may assign to a Vic variable (such as par) any object of
any subclass of Vic.

Review of the email metaphor

In the email metaphor of Section 1.6, a method call is an email message you send to an
object. The method name is the subject line of the email. The parameter is the body text
of the email. A method call with an empty pair of parentheses indicates there is no body
text in the message. But when the email message is bi | | . hasAsMany Sl ot sAs(t ed),
the recipient bi | | sees from the subject line that you want to know whether it has as
many slots as some other object. Then bi | | looks at the body text of the email to find
out who the other object is.

The giveEverythingTo method
The action method in Listing 3.7 removes all CDs from the

executor's slots and puts them into the Looper parameter's
slots, along with any CDs that happen to already be on the

stack. A sample call is sam gi veEver yt hi ngTo(sue) . V":
The logic is quite straightforward because both the executor

and the parameter are Loopers: Tell the executor to

cl ear Sl ot sToSt ack, then tell the Looper parameter to &

fill Sl ots. Since the Giver class is a subclass of Looper

which is a subclass of Vic, a Giver object inherits all the
capabilities of Loopers as well as Vics. Figure 3.6 shows
the hierarchy of object classes involving the Giver class.
Figure 3.6 Giver's hierarchy

3-16 Java Au Naturel by William C. Jones 3-16

Listing 3.7 The Giver class of objects

public class G ver extends Looper

/** The executor gives all of its CDs to the Looper paraneter,
* which distributes themto its own slots to the extent
* possible, along with any CDs originally on the stack. */

public void giveEverythingTo (Looper target)
{ this.clearSlotsToStack();

target.fill Slots();
|

two Vics are in fact Looper objects, by calling the cl ear Sl ot sToSt ack
method and the fi | | SI ot s method defined in the earlier Listing 3.4. The
executor must of course be an instance of Giver, because the
gi veEver yt hi ngTo method is defined in the Giver class. However, the parameter only
needs to be able to execute fi | | Sl ot s, so itis enough that it be an instance of Looper.
It is good style to not specify it to be an instance of Giver. That retains the greatest
flexibility in the use of the gi veEver yt hi ngTo method.

Q Programming Style The gi veEver yt hi ngTo method uses the fact that the

Local variables versus parameters

You cannot call the gi veEver yt hi ngTo method unless you have a Giver object to do
the giving and a Looper object to be given to. The value that is listed before the dot in
that method call is assigned to t hi s inside the gi veEver yt hi ngTo method. The value
that is listed inside the parentheses of that method call is assigned to t ar get inside the
gi veEver yt hi ngTo method.

Say a main method declares four different Giver objects and contains the following two
statements using them:

st eve. gi veEver yt hi ngTo (don);
m ke. gi veEveryt hi ngTo (dru);

The main method has st eve, don, m ke, and dr u as its local variables (variables
declared within the body of the method). In general, the only way you can refer to the
value of a local variable of one method within another method is to have the local variable
be an executor or an actual parameter of the method call. Either way, that other method
cannot change which value is stored in the local variable; it can only change the state of
the object to which the value refers.

On the first call of the gi veEver yt hi ngTo method, st eve is the executor, sot hi s is
an alias for st eve during execution of the first call. On the second call of the

gi veEver yt hi ngTo method, mi ke is the executor, so t hi s is an alias for m ke
during execution of the second call.

Likewise, t ar get is the formal parameter, so t ar get is an alias for the actual
parameter don on the first call but it is an alias for the actual parameter dr u on the
second call. In effect, the first method call performs the assignment t ar get = don
and the second method call performs the assignmentt ar get = dru.

A formal parameter (variable declared inside the parentheses of a method heading)
differs from a local variable (declared in the body of the method) in that (a) a formal

3-17 Java Au Naturel by William C. Jones 3-17

parameter receives its initial value at the time the method is called, but (b) a local variable
has no initial value until the statements explicitly give it one. Both kinds of variables are
local to the method definition in the sense that they cannot be used outside the method
definition.

Multiple parameters

A method can have two or more parameters, separated by commas. For instance, the
following method has two Vic parameters. The executor tells whether at least two of the
three sequences (its own, one's, and two's) have at least one slot available:

public bool ean at Least TwoNot At End (Vic one, Vic two)
{ if (this.seesSlot() && one.seesSlot())
return true;
if (this.seesSlot() & two.seesSlot())
return true;
return one.seesSlot() & two.seesSlot();

Two examples of how this method might be called are:

if (jazz.atlLeast TwoNot At End (pop, classical))...
bool ean result = first.atlLeast TwoNot At End (third, second);

L anguage elements
Y ou may put the following within the parentheses of a method heading: Type VariableName
If you have two or more such phrases within the parentheses, separate those phrases with commas.

Exercise 3.26 If you changed the first statement of hasAsManySl ot SAs to be
String thisSpot = par.getPosition(),whatother changes would you have to
make so it gives the right answer?

Exercise 3.27 How would you change the hasAsMany S| ot sAs method so the executor
tells whether it has more slots than the Vic parameter?

Exercise 3.28 Write a query method publ i ¢ bool ean i sAt OneG venPosi ti on
(String one, String two) for asubclass of Vic: The executor tells whether either
of those two parameters is the same as its current position.

Exercise 3.29 Write a method publ i ¢ voi d noveToCorrespondi ngSl ot (Vic
par) for a subclass of Vic: Every CD in a slot of the parameter that corresponds to an
empty slot in the executor is moved over to the executor's corresponding slot. Leave the
position of the two Vics unchanged.

Exercise 3.30* Write a query method publ i ¢ bool ean hasMor eThanDoubl e (Vic
par) for Looper: The executor tells whether it has more than twice as many slots as the
Vic parameter. Do not use numeric variables. Precondition: The executor is known to
have an even number of slots. Extra credit: Remove the precondition.

Exercise 3.31* Draw the UML diagram for Listing 3.6.

Exercise 3.32** Write a query method publ i ¢ bool ean mat ches (Vic par) for
Looper: The executor tells whether it has a CD wherever the Vic parameter has a CD
and it does not have a CD wherever the Vic parameter does not. That is, the two
sequences of slots are the same in terms of the presence or absence of CDs, starting
from the current slot in each.

Exercise 3.33** Write a method public void shiftOne (Vic one, Vic two) for
a subclass of Vic: At each position where the executor has an empty slot and either of
the two Vic parameters has a filled slot in the corresponding position, shift the CD to the
executor's slot. When a choice is possible, take a CD from the first parameter's slot.
Exercise 3.34** Write a query method publ i ¢ bool ean sameNunber (Vic par)
for Looper: The executor tells whether it has the same number of CDs in its slots as the
Vic parameter. Do not use numeric variables. Hint: Advance each to the next non-
empty slot. Repeat this until one runs out of slots. Does the other?

3-18 Java Au Naturel by William C. Jones 3-18

3.6 Returning Object Values

You have written several methods that return boolean values. Itis also legal to have a
method return an object value, such as a Vic or Looper or String value. For instance,
sam get Posi ti on() returns a String object.

The | ast Enpt ySI ot method in Listing 3.8 illustrates the return of a String object. Its
purpose is to return the position of the last empty slot in a sequence of slots; but it returns
the current position, empty or not, if there is no empty slot after the current position. A
main method could use this | ast Enpt ySl ot method in a statement such as

String spot = sam | astEnptySlot();
or in a condition such as

sue.lastEnptySl ot (). equals (sue.getPosition())

which tells whether sue is positioned at its last empty slot. This method must be in the
Looper class because it calls the private method backUpTo, which is not even accessible
from a subclass of Looper.

Listing 3.8 A Looper method returning a String

/** Return the position for the | ast enpty spot in
* the sequence, or the current spot if no enpty spot. */

public String |astEnptySlot ()
{ String spot = this.getPosition();
String lastEnpty = spot; // in case no later slot is enpty
while (this.seesSlot())
{ if (! this.seesC))
| astEnpty = this.getPosition();
this. moveOn();

}
thi s. backUpTo (spot);
return | ast Enpty;

} !/

The logic in this | ast Enpt ySI ot method goes through each slot in the sequence,
setting | ast Enpt y to the position of each empty slot it sees. | ast Enpt y could be
given several different values, but each assignment replaces whatever was already
stored in the variable. So only the last value assigned is in | ast Enpt y when the loop
terminates. At that time, | ast Enpt y must contain the position of the last empty slot.

No design block is given for this method because it is so similar to the goToLast CD
method in the earlier Listing 3.2. You will find it informative to compare and contrast the
two step by step.

Returning a Vic object
You can return a Vic object as well as a String object, as illustrated by the following

method. It repeatedly creates new Vic objects until it finds one whose first slot contains a
CD (or until it runs out of Vics).

3-19 Java Au Naturel by William C. Jones 3-19

public Vic firstWthC)
{ Vic sequence = new Vic();
whi | e (sequence. hasSlot() &% ! sequence. seesC())
sequence = new Vic();
return sequence;

Caution You can avoid the most common compiler errors that beginners
make if you just check two things before compiling a program: First, every
left brace has a matching right brace directly below it, and vice versa.
Second, no line followed by an indented line ends in a semicolon, and every
line not followed by an indented line does end in a semicolon.

Reminder: Variable names should start with lowercase letters and class names should
start with capitals. You may ask why it should be so. You might as well ask why you
cannot say "el mano" in Spanish instead of "la mano." You would be understood alright,
but it is not proper Spanish.

Exercise 3.35 What change would you have to make in the | ast Enpt y S| ot method of
Listing 3.8 to return the position of the last non-empty slot?

Exercise 3.36 Write a Looper method public Vic shorterOne (Vic par):
Return the Vic with the fewer slots, either the executor or the parameter. Leave both
unchanged. Precondition: They do not have an equal number of slots.

Exercise 3.37* Revise the | ast Enpt yS| ot method to return the position of the next-to-
last empty slot. Return the initial position if the executor has less than two empty slots.
Exercise 3.38** Rewrite the | ast Enpt ySl ot method to have the executor go directly
to the end of the sequence and then find the last empty slot as it comes back towards the
starting position.

3.7 More On The Analysis And Design Paradigm

Problem Statement Write a program to work with three sequences of slots for storing
CDs. The first Vic has perhaps some country music CDs in its slots, and the second Vic
has perhaps some jazz CDs in its slots. You are to put all of these CDs in the third Vic's
slots, alternating the two kinds of music (for variety). The third Vic may already have
some CDs in its slots; you are to leave these where they are and fill in the rest of the
slots, to the extent possible.

Many people, given a problem assignment such as this, are not sure where to start. Itis
extremely useful to break up the process into five basic stages:

Analysis (clarifying what to do) Make sure you clearly understand what the program is
to accomplish. Consider exceptional cases and how you are to handle them. Write down
data you will use to test the final software and figure out what will happen when that data
is used. Go to the client (or your instructor if appropriate) for a decision on ambiguous
points. You need a clear, complete, unambiguous specification before you can go further.

Logic Design (deciding how to do it) Make a step-by-step plan of how you will get the
job done. The design method described later in this section is a reliable and efficient way
to do this. You have already seen many design blocks illustrating the method.

Object Design (choosing the objects that help you do it) See what kinds of objects you
have already available that can provide the services you need. Perhaps you have to add
more capabilities to existing objects (e.g., additional Looper methods). Perhaps you
need to invent completely new kinds of objects to do the job.

3-20 Java Au Naturel by William C. Jones 3-20

Refinement (making sure you are doing it) Go over your logic at length to make sure it
satisfies the stated requirements, that it will do what it should for the given test data, and
that it will behave correctly in exceptional cases.

Implementation (doing it) Translate your logic design into Java using the methods
supplied by the objects you have designed.

When you implement the design, you will usually find that several steps are too complex
to do easily. In that case you call a new method for which you repeat the entire process
on a lower level: (a) analyze the specification for the sub-problem to make sure it is
clear; (b) design a step-by-step solution of the sub-problem; (c) select or invent the object
methods you need; (d) refine the plan; (e) implement the plan in Java.

To create a good plan, write out or say aloud the steps the computer will take, in ordinary
English sentences. Then organize this list of steps to show which steps are done
conditionally or repeatedly and to highlight the condition for doing them or repeating
them. Otherwise keep it in English (or whatever natural language you speak most
fluently). You can sharpen your plan by planning the data with which you will test your
program when it is done and computing what the results will be for the various test runs.

Analysis for the Interleaf program

When you think further about the problem statement for the alternating CDs, you realize it
is not quite clear whether the first CD moved is to come from the first sequence or the
second sequence. Also, if the first or second sequence of slots has more CDs than are
required to fill in the slots in the third sequence, are those extra CDs supposed to stay
where they are, or should they go onto the stack?

You talk to the client to get the answers to these questions. For the rest of this
discussion, assume that the client says all CDs from the first sequence are to go into the
odd-numbered slots (1, 3, 5, etc.) of the third sequence, with any leftovers to be put on
the stack. The client tells you there will be enough CDs in the first sequence to do this.
However, if all of the odd-numbered slots of the third sequence are already filled, you are
to leave the CDs in the first sequence. You are to handle the second sequence
analogously, with CDs going into the even-numbered slots. The client is quite clear that
the CDs put into the third sequence are to be in the same order as they were in the
sequence they came from.

Logic design for the Interleaf program

A reasonable logic design of the problem is shown in the accompanying design block.
This design illustrates Structured Natural Language Design, SNL design for short.
Steps 3b and 4b specify that the target's slots are to be filled in reverse order from the
stack, so that whatever was furthest down the source sequence, and thus ended up on
top of the stack after transferring the CDs to the stack, goes furthest down the target
sequence.

STRUCTURED NATURAL LANGUAGE DESIGN for the main logic
1. Create two Vic objects to serve as the source of the CDs.
2. Create a third Vic object to receive the CDs. Refertoitast ar get .
3. If t ar get does not have all of its odd-numbered slots filled, then...
3a. Transfer every CD the first Vic has in its slots to the stack.
3b. Fill t ar get 's odd-numbered slots from the stack in reverse order.
4. If t ar get does not have all of its even-numbered slots filled, then...
4a. Transfer every CD the second Vic has in its slots to the stack.
4b. Fill t ar get 's even-numbered slots from the stack in reverse order.

3-21 Java Au Naturel by William C. Jones 3-21

You saw several examples of structured design earlier in this chapter and in Chapter
Two. The three ways that SNL design differs from ordinary discourse are as follows:

1. When action X is executed conditionally, express it in the form i f what ever
t hen. .. X with the action X on a separate line and indented beyond the description
of the condition.

2. When action X is executed repetitively, express it in something like the form For
each val ue do. .. X with action X on a separate line and indented beyond the
description of the looping. The exact phrasing is unimportant; Repeat unti |
what ever . .. X often makes more sense in a particular situation.

3. When you must refer to a particular value several times, give it a name (t ar get in
the preceding example). This is clearer than using a phrase such as "the third Vic
that was created” many times.

This design is an algorithm, which means a step-by-step description of a process for
accomplishing a task, specific enough that at each step there is no question what to do
next. You do not have to put the secondary line numbers in your design if you do not
want to. The crucial part is to show which actions depend on which conditions.

Everything about this design is ordinary English except for variable names and indenting
to show which actions are done under which conditions. That is the "structured” part of
the design. Do not write in Java until you know what you are going to say.

Do not try to break the design down into very many small steps; ten steps is usually more
than enough. But include all significant steps. Your steps can specify quite complex
actions, such as Steps 3a and 3b in the preceding design.

Object design for the Interleaf program

Now you decide what kinds of objects will help you get the job done quickly and easily.
Checking whether odd-numbered or even-numbered slots are filled, and clearing out all
the CDs from a sequence, are skills possessed by Looper objects (Listing 3.4 and Listing
3.5). So you choose them to help you, rather than the poorly-educated Vic objects.

Each step of the logic design turns out to be easy to implement in Java (using e.g. a
Looper's cl ear Sl ot sToSt ack for Step 3a) except for Steps 3b and 4b. An object that
can do Step 3b can do Step 4b with a small adjustment. So you really need an even
smarter kind of Looper, one that can carry out the process for Step 3b. You could add a
method to the Looper class for this task. But you probably will never need it again, and
the Looper class is becoming rather cluttered. So you could make a subclass of Looper
that has this capability, intended for use in this program only.

You need to develop an SNL design for this second-level process. It could be as shown
in the accompanying design block. You then refine your overall design by studying it to
make sure you understand every aspect of it and by studying the original specifications to
make sure you met them all.

DESIGN of the sub-algorithm: filling odd-numbered slots in reverse order
1. Make a note of the current position in the sequence.
2. Move two slots at a time down the sequence until you reach the end.
3. If you moved an odd number of times to get to the end then...
3a. Back up to the last slot and put a CD there.
4. Repeat the following for every other slot until you are where you started...
4a. Back up two slots.
4b. Put a CD in the current slot.

3-22 Java Au Naturel by William C. Jones 3-22

Implementation of the Interleaf program

The implementation stage translates each sentence of the design into a few statements
of the programming language. You often make some minor additions while coding. For
instance, you could start the program with Vic's r eset command, which lets you run
several test cases easily. And you could display a message when the program finishes.
Listing 3.9 is a possible final solution for the coding. Figure 3.7 is the UML diagram.

Listing 3.9 Application program using the BackLooper class of objects

public class Interl eaf

{
/** Move the first sequence's CDs to the odd-nunbered slots
* of the third sequence. Myve the second sequence's CDs to
* its even-nunbered slots. No effect if not 3 sequences. */

public static void main (String[] args)
{ Vic.reset (args);

Looper one = new Looper(); /] design step 1

Looper two = new Looper();

BackLooper target = new BackLooper(); /] design step 2

if (! target.seesOddsFilled()) // design step 3

{ one.clearSlotsToSt ack(); /1 design step 3a
target.filllnReverse(); /1 design step 3b

}

if (! target.seesEvensFilled()) /] design step 4

{ two.clearSlotsToStack(); [/l design step 4a
t arget . moveOn() ; /1 design step 4b
target.filllnReverse();

}

Vic.say ("All done putting CDs in #3");

|

}
| | #HBHHHBHHHBHHH B H B H B H B H R H R R R R R R R

public class BackLooper extends Looper

/** Fill slots 0,2,4,6,... ahead of the current one, reverse
* order. Precondition: The executor has at least 1 slot. */

public void filllnReverse()

{ String spot = getPosition(); /1 sub-design step 1
bool ean novedl nPairs = true; /1 sub-design step 2
whil e (seesSlot())

{ novedlnPairs = ! novedlnPairs;
noveOn() ;
}
if (! novedlnPairs) /1 sub-design step 3
{ backUp();
: put CO() ;
while (! spot.equals (getPosition())) // sub-design step 4
{ backUp();
backUp() ;
put CO() ;

3-23 Java Au Naturel by William C. Jones 3-23

Intefleat |- —————~—~—~—~"— === == === = - — = - — — — — - — A vic
——————————————— HLooper
ming 1 getPositiond 1
- — — — =W BackLooper —[> newl] 4[> zeesslot)
clearSiotsToStack!) tmoese N
fillnReverse() seesOddsFiled]) hackUp()
zeesEvensFiled) String g:ﬁt’)ﬁ J
—————————————— A equalsr]

Figure 3.7 UML class diagram for the Interleaf class

The statement novedl nPairs = ! novedl nPai rs illustrates a technique you have
not seen before. The statement switches the value of the boolean variable between
being true and being f al se each time through the loop. So it will be true atthe
test of seesSl ot () if and only if the loop has executed an even number of times. If it
is fal se when the loop terminates, the executor must back up one slot to be an even
number of slots away from the slot where it started.

Technical Note Java will let you put the BackLooper class in the same file with the
application program class if you remove the word publ i ¢ from the class heading for
BackLooper. The compiler will "complain” if you try to use a non-public class in another
class in some other file. But since you do not expect to use the BackLooper class for any
other situation, keeping it in the same file with Interleaf is a reasonable thing to do.

Other aspects of software development

In larger projects, you should normally set an intermediate goal of developing software
that does much of what the final project should do. After you test it thoroughly, you add
to it to come closer to the final version. Repeat this until done. This is called iterative
development. You will see examples of it later in this book.

Most people cannot go directly from the statement of a complex problem to the
expression of the algorithm in Java with few errors. It is far easier, and takes much less
time overall, to go through the intermediate stages just described.

If you recite your solution aloud in ordinary English sentences, you will more easily hear
any bugs it might have. That will make less work for you in getting the final Java solution
right.

Programming Style It is good style to rarely comment individual statements in
your programs; commenting each method as a whole is usually enough. This
book comments some individual statements in Chapters One through Three
only to help you understand what newly-introduced commands and concepts
mean and to see how steps of the design are implemented in the coding.

Exercise 3.39 Rewrite the firstloop inthe fill |l nRever se method so that it advances
two slots each time through the loop, except if it can only advance one slot it sets

novedl nPai rstofal se.

Exercise 3.40* Write out a design in SNL for the program of the following exercise.
Exercise 3.41** Write an application program that moves a CD from each slot in the first
sequence to the corresponding slot in the second sequence where possible, and also
from each slot in the second to the corresponding slot in the first where possible.

3-24 Java Au Naturel by William C. Jones 3-24

3.8 Analysis And Design Example: Finding Adjacent Values

Suppose you need a special kind of Looper object that can answer the question, "Do you
have two CDs right next to each other?" You only want it to consider CDs at or after its
position at the time you ask the question. So you need a subclass of Looper with a query
method that tells whether the executor contains two CDs right next to each other, looking
only at slots at or after the current position. Two examples of how such a method might
be used are as follows:

i f (sue.hasTwoTogether()). ..
whi | e (sam hasTwoToget her()). ..

You could use the accompanying design block for this hasTwoToget her method.

DESIGN of hasTwoTogether

1. Make a note of the current position so you can return to it when you have the answer
to the question.

2. Go down the sequence and find out whether you have two CDs together.

3. Go back to the position you had at the beginning of execution of the process.

4. Return the value found at step 2 of this logic.

This plan does not have enough detail. Steps 1, 3 and 4 can be implemented with just
one or two Java statements, but step 2 is quite complex. You need a sub-plan to break
step 2 down into enough detail that you can easily implement it in Java.

One tactic for solving this sub-problem is to make a note at each slot of whether a CD is
in the slot. When you come to the next slot, you know to return true if it has a CD and
your note says the previous slot has a CD. Otherwise you update the note for the current
slot and go further.

This logic is hard to follow written in normal paragraph form. You need to lay it all out in a
structured design so you can study it. The accompanying design block works well.

DESIGN of the sub-algorithm foundPair
1. Create a boolean variable pr evi ousS| ot | SEnpt y that can be tested at any slot to
tell whether the previous slot is empty. Since you will first test it when at the
second slot, initialize it to t r ue if the first slot is empty, to f al se if not.
2. Move forward to the second slot.
3. For each slot in the sequence, from this second slot forward, do...
3a. If you do not see a CD then...
Make a note that pr evi ousS| ot | SEnpty ist r ue, to be tested later.
3b. But if you do see a CD and the previous slot was empty then...
Make a note that pr evi ousSl ot | sEnpty is f al se, to be tested later.
3c. Otherwise you see a CD and the previous slot was not empty, so...
Return the answer t r ue without going any further in this logic.
3d. Move forward to the next slot.
4. Return f al se, since you reached the end of the sequence without seeing
two together.

3-25 Java Au Naturel by William C. Jones 3-25

Always review your design for logical consistency and completeness before you
implement it. A review of this plan finds a defect: The program will fail if you try to move
forward to the next slot (step 2 of the sub-algorithm) when you are already at the end of
the sequence. So the plan should be corrected to guard against that possibility. The
implementation in Java in Listing 3.10 makes this correction with a crash-guard: an extra
check of seesSl ot () avoids calling the private method when there is no slot there.

Listing 3.10 The PairFinder class of objects

public class PairFinder extends Vic

[** Tell whether there are two CDs in a row at any point at
* or after this position. Leave the executor unchanged. */

publ i ¢ bool ean hasTwoToget her ()
{ String spot = getPosition(); /] design step 1
bool ean hasTwoToget her = seesSl ot () /] design step 2
&& foundPair ();
while (! spot.equals (getPosition())) /] design step 3

backUp() ;
return hasTwoToget her; /] design step 4
|

privat e bool ean foundPair ()

{ bool ean previousSlotlsEnmpty = ! seesCD(); // design step 1
moveOn() ; /] design step 2
whil e (seesSlot()) [/l design step 3
{ if (! seesC))) [/l design step 3a

previ ousSl ot | SEnpty = true;
else // has one in this slot /1 design step 3b
i f (previousSl otl sEnpty)
previ ousSl ot | sEnpty = fal se;
el se /1 design step 3c
return true
moveOn() ; /1 design step 3d
}
return fal se; [/l design step 4
|

This logic uses the boolean variable previ ousSl ot | sEnpty in a way you have not
seen before. The purpose of such a variable is to store information obtained during one
iteration of the loop to be used during the next iteration of the loop. It is best to name
such a variable to convey its meaning at the time it is tested, not at the time it is assigned
a value.

Is it a bad thing that the f oundPai r method changes the object and is thus not a true
query method? No, it does not count as a style violation because (a) a call of
hasTwoToget her does not, and (b) no one outside the class can call f oundPai r,
since it is a private method.

3-26 Java Au Naturel by William C. Jones 3-26

Sequential/selection/repetition

The key activity in creating software is designing and implementing methods.
Specifically, you design and implement a main method which calls on other methods
which, unless you have them in your library, you must also design and implement. Some
of those methods in turn can call on other methods which you must then design and
implement or else find in your library of existing methods, and so forth.

Whatever the objects your software uses, whether Vics or Turtles or something else, the
design of a method comes down to repeatedly choosing one of three kinds of activities,
as follows. The last two kinds of activities listed are usually done with an if-statement or
a while-statement, respectively:

which sequence of actions you execute, or

which query you test to determine which of two sequences of actions you execute, or
which query you test to determine how many times you execute one sequence of
actions.

Even when you start using numbers in your programs, you will find that the calculations
or the tests for inequality you perform are all done only as part of actions or queries to be
used as described in the preceding list. The list of activities can be summarized as:
sequential, selection, and repetition.

In short, an essential part of programming is putting together actions and queries using

i f and whi | e to create a method that performs a single well-defined task. Even though
most of the programming you have seen has been in the highly limited context of Vics
and Turtles, the skills and concepts you have learned are highly useful in most
programming situations.

Loop control values

You must check out any looping logic you write to make sure it eventually terminates.
The best way to do this is to make sure it has a loop control value. That is a numeric
expression that (a) must be positive for the loop to continue executing, but (b)
decrements by at least 1 each time the loop executes.

For most of the loops you have seen, the loop control value is the number of slots left in
the sequence from the current position, since (a) the continuation condition usually tests
seesSl ot () to make sure it is true, and (b) each iteration of the loop executes
nmoveOn() . Thatis, the number of slots left must be positive and each iteration subtracts
1 from the number of slots left.

For some loops you have seen, the loop control value is the number of CDs on the stack,
since (a) the continuation condition usually tests st ackHasCD() to make sure it is true,
and (b) each iteration of the loop executes put CD() . That is, the number of CDs on the
stack must be positive and each iteration subtract 1 from the number of CDs on the
stack.

For some other loops you have seen, the loop control value is the number of slots
between a previous position and the current position, since (a) the continuation condition
tests ! spot.equals (getPosition()),and(b)each iteration of the loop executes
backUp() .

Exercise 3.42 Rewrite the f oundPai r method to have only one return statement.
Exercise 3.43** Rewrite the f oundPai r method to not use a boolean variable. Instead,
when the executor sees a CD, have it go forward to see if there is one after it and, if not,
move back again. Then discuss whether this is a better solution than the one in Listing
3.10. Can you think of a better solution than either?

3-27 Java Au Naturel by William C. Jones 3-27

3.9 Turing Machines (*Enrichment)

The Vic machine described in these two chapters is a modification of a Turing Machine.
A Turing Machine is an extremely simplified version of a computer, one that is highly
impractical for actual use. The advantage of this is that it is far easier to develop logical
proofs about what is and is not computable by a computer if the computer has maximal
simplicity.

The Church-Turing Thesis is that, for any computational process that can be
programmed on any computer, some Turing Machine program carries out exactly the
same process. This thesis is generally accepted by computer scientists. So when you
see a proof in a Theory of Computation course that a certain problem cannot be solved
by a Turing Machine program, that is accepted as a proof that no computer program will
ever exist that can solve that problem.

A Turing Machine works with a sequence of positions (like Vic slots). The sequence is
called a tape. Each position contains a single digit or else a blank. The machine begins
operation at the far left of the sequence of positions. It is not allowed to back up past the
position it starts on; the tape begins at that position. However, the tape goes on as far as
necessary to the right (so there is no need for anything resembling seesSl ot ()).

A Turing Machine can check what digit is at its current position, if any; it can write a
blank or any digit at the current position; and it can go forwards and backwards on the
tape. To help you understand exactly what a Turing Machine is, we describe a class of
objects similar to Vic. We could call it Tum for short (from TUringMachine). A Tum
object understands only four basic commands:

sees(0) tells whether there is a digit O at the current position, and similarly for other
digits 1 through 9. The sees(-1) message tells whether there is a blank at the
current position.

put (0) puts the digit O at the current position, and similarly for other digits. Any
negative value, asin put (-1) or put(-30), puts a blank at the current position.
The new value replaces whatever value was already at that position.

nmoveOn() goes one position further right, away from the beginning of the tape.
backUp() goes one position further left, towards the beginning of the tape. It
crashes the program if the current position is the one at the tape's beginning.

You also have a strong restriction on how you can put these basic commands together to
create new methods for subclasses of Tum:

Each method is to have no parameters, no local variables, and no return value. So
the only way to pass information around or store it is to put it on the tape.

Each method body for a subclass of Tum is to consist of (a) at most one while-
statement, followed by (b) at most one multi-way selection statement. No two
conditions are to be true for the same digit. The subordinate statements in either
case are simple method calls, selected from the four basic commands and other
methods in a subclass of Tum.

An example of a permissible subclass of Tum is shown in Listing 3.11. The reason for
the restrictions is that whatever you write can then be easily translated to a hypothetical
machine code that has only one kind of instruction, structured as follows:

If the current method is X and the current position contains Y then...
Put Z in that position (or leave it unchanged if you wish).
Move 1 position forward or backward (or remain there if you wish).
Switch to some method (or not, as you wish).

3-28 Java Au Naturel by William C. Jones 3-28

Listing 3.11 A subclass of Tum

public class Sanpl eTum ext ends Tum

{
public void clear()
{ while (sees (0) || sees (1))
{ put (-1);
moveOn() ;
}
if (sees (-1))
backUp() ;
|
public void swtch()
{ if (sees (0))
{ put (1);
backUp() ;
else if (sees (1))
{ put (0);
backUp() ;
clear();
}
|
}

Each method you could be in represents a different state of the Turing Machine. Since a
program can only have a finite number of methods, this is a finite-state machine.

For this implementation in Java, you cannot write on the physical tape before the
machine begins its operation or read the tape after it finishes. So you need a way to
initialize the tape for the Tum object and a way to display the current status of the tape.
This can be done using statements such as the following:

Tum sam = new Tum (" 104 52");
sam car r yQut SonePr ocess();
sam showSt at us (4);

The creation of a new Tum makes the tape consist of the given String of characters
followed by many blanks. And the showSt at us command displays the tape on the
screen (plus the numeric parameter, which helps you figure out which call of

showSt at us produced which output). You will learn how to fully implement the Tum
class as described here by the middle of Chapter Five. Itis a major programming project
to do this, so the Tum class is not provided here.

For a Turing Machine that works with binary numbers, you would only allow input
consisting of 1s and 0s and blanks. You could then develop, for instance, a subclass of
Tum that could add two such binary numbers together and leave the result on the tape
for the showSt at us message to display.

3.10 Javadoc Tags (*Enrichment)

As you learned in Chapter Two, a comment that begins with /** and ends with */
and comes immediately before a public class, public method, or public variable is special
(you will see public variables in Chapter Five). When you give the command

j avadoc Soned ass. | ava

3-29 Java Au Naturel by William C. Jones 3-29

in the terminal window, the javadoc formatting tool creates a webpage named

Sonmed ass. ht M which displays documentation for the class in a useful form. The first
complete sentence in each such comment is put in a summary section, so you want to
make sure it conveys the key idea of your comment. Multi-line comments can have each
line after the first begin with an asterisk if you like.

The javadoc tool creates several more html files for you. One is i ndex. ht m , which
lists in one section all of the methods in your class in alphabetical order with clear
descriptions. It also lists any variables you have in another section. Another is i ndex-
al I . ht M , which gives an alphabetical index of all the parts of your class. Browse one of
these files and click on the Tree and Help options to see other documentation.

The twelve javadoc tags

You can put @ et urn in a comment to tell the reader that the phrase that follows
describes the value that is returned by a method. The javadoc tool will display it in a
special way, because @ et ur n is one of the standard javadoc tags. The following are
three tags that can be used in javadoc comments for classes, methods or variables:
@ee lists other classes or methods that are highly related to this one.

@i nce tells which version of the software first had this feature.

@lepr ecat ed means it is outdated and should not be used anymore.

A class can have the following two tags:
@ut hor tells the author of the coding.
@er si on tells the current version of the software.

Methods can have the following four tags:

@ar am describes a parameter of the method.

@ et ur n describes the value that the method returns, if it returns one.

@ hr ows names the kind of Exception thrown and under what conditions. You will learn
about Exceptions shortly; they almost never arise when programming with Vics.
@xception isthe older form of @ hr ows.

The three remaining permissible tags @eri al , @eri al Fi el d, and @eri al Dat a are
ones for which you will not have any use for a long time.

3.11 Review Of Chapter Three

Listing 3.4 and Listing 3.7 illustrate almost all Java language features introduced in this
chapter.

About the Java language:

» A while-statement states a continuation condition followed by the subordinate
statements. The continuation condition must be true in order for the subordinate
statements to be executed. Those statements are placed within matching braces
unless there is only one subordinate statement. An iteration is one execution of the
subordinate statements in this loop.

» soneString. equal s(anot her String) isamethod in the String class in the
Sun standard library. This method tests whether the two String values have the
same content, i.e., the same characters in the same order.

» A method declared as pri vat e can only be called from within the class where it is
defined. A method declared as publ i ¢c can be called from any class.

» Youcan uset hi s inside an instance method as a reference to the executor of the
method call. If you call an instance method without an executor, the compiler uses
the default executor, which is t hi s of the method containing the method call (i.e.,

3-30

Java Au Naturel by William C. Jones

3-30

itis t hi s instance of the class). This only applies when the method call is itself
inside an instance method, not a class method such as mai n.

» When a method heading has a variable declaration in its parentheses, each call of
the method must have a value of the same type in its parentheses. When the
method executes, this formal parameter is initialized to the value given in the
method call (the actual parameter, also known as the argument).

» You can declare additional variables within the body of a method, e.g., booleans,
Vics, and Strings. These local variables have no connection with variables outside
of the method, and they have no initial value. You can only use a local variable after
the point where it is declared and inside whatever braces contain the declaration.

» See Figure 3.8 for the remaining new language features. In that grammar summary,
the Type could be a ClassName or boolean; an Ar gurrent Li st is a number of
expressions separated by commas; and a Par anet er Li st is a number of Type
Var i abl eNanme combinations separated by commas.

whi | e (Condition)
St at enent

statement that repeats test-
Condition-do-Statement, quitting
when the Condition is false

whi | e (Condition)
{ Statenent&Goup
}

statement with the same effect as
described above, except the entire
sequence of 0 or more statements
is executed between tests.

Type Vari abl eNanme = Expression;

statement that combines declaring
and defining a variable

C assNane. Met hodName (Argument Li st)

expression that calls a no-
executor-method in the class

Var i abl eNane. Met hodNane(Ar gunent Li st)
Met hodName (Argument Li st)

expressions that call an instance
method with parameters

public Type Met hodNane(Paranet erLi st)
{ Statement G oup }

public void MethodNane(Paranet erLi st)
{ Statement G oup }

declarations of instance methods
that accept input initially assigned
to the formal parameters

Figure 3.8 Declarations, expressions, and statements added in Chapter Three

Other vocabulary to remember:

» When an object your program has created has no variable that refers to it, then the
object is recycled by Java's garbage collection mechanism.
» The hierarchy of some classes is the set of relationships between subclasses and

superclasses of that group of classes.

» Structured Natural Language Design expresses the logic of an algorithm
completely in English or some other natural language, except that (a) statements that
are executed conditionally (depending on whether some condition is true) are
indented relative to the condition, and (b) some variable names are used.

About Vic methods (developed for this book):

» soneVic. getPosition()

returns a String that describes the current position in
the sequence represented by soneVi c. If x and y are two such Strings returned
when at the same position in the same sequence, then x and y may be different
String objects, but it will be true that x. equal s(y) .

All other Vic methods were described in Chapter Two: four action instance methods
(moveOn, backUp, put CD, t akeCD), two query instance methods (seesSl ot ,
seesCD), three class methods (r eset , say, st ackHasCD), and new Vi c() .

3-31 Java Au Naturel by William C. Jones 3-31

About UML notation (all class diagram notations used in this book):

>

YV V VY

A class box is a rectangle divided into three parts. The top part has the class name
and the bottom part lists any of its method calls you wish to mention.

A dependency of the form X uses Y is indicated by an arrow with a dotted line.
A generalization of the form X is a ki nd of Y isindicated by an arrow with a
solid line and a big triangular head.

Class methods and class variables are to be underlined.

You may add the parameter types in the parentheses after a method name.

You may add the return type after those parentheses, with a colon in between.

Answers to Selected Exercises

3.1

3.2

3.3

3.6
3.7

3.8
3.12

3.13

3.16
3.17

3.18

public void removeAllCDs()
{ while (seesSlot())
{ takeCD();
moveOn();
}

public void toLastSlot()
{ while (seesSlot())
moveOn();
backUp();

public void takeOneBefore()
{ backUp();
while (! seesCD())
backUp();
takeCD();
}
Put an exclamation mark in front of seesCD().
You could insert the following lines after the first while-statement:
if (seesSlot())
{ moveOn();
while (seesSlot() && ! seesCD())
moveOn();

If there is no slot there, the program fails. And if seesSlot() is true, so is seesCD().
Remove the takeCD() method call from the first while statement and
replace the second while statement by the following:
while (! spot.equals (getPosition()))
{ backUp();
takeCD();

public boolean lastlsFilled()
{ String spot = getPosition();
while (seesSlot())
moveOn();
backUp();
boolean valueToReturn = seesCD();
while (! spot.equals (getPosition())
backUp();
return valueToReturn;

"string" should be capitalized, but "Main" should not be capitalized.
You cannot assign a String value to a Vic variable, so change "Vic" to "String". It is bad style to
capitalize the name of a variable, but it is not a compilation error.
public boolean hasSomeFilledSlot()
{ String spot = this.getPosition();
while (this.seesSlot() && ! this.seesCD())
this.moveOn();
boolean valueToReturn = this.seesSlot();
while (! spot.equals (this.getPosition()))
this.backUp();
return valueToReturn;

3-32

3.19

3.20

3.21

3.26
3.27

3.28

3.29

3.35

3.36

3.39

3.42

Java Au Naturel by William C. Jones

public void fillEvenSlots()
{ if (seesSlot())
{ moveOn();
fillOddSlots();
backUp();

}
public boolean seesOddsFilled()
{ String spot = getPosition();
while (seesSlot())
{ if (! seesCD())
{ backUpTo (spot);
return false;

moveOn();
if (seesSlot())
moveOn();

}
backUpTo (spot);
return true;

public boolean seesEvensFilled()
{ if (! seesSlot())
return true;

moveOn();

boolean valueToReturn = seesOddsFilled();

backUp();

return valueToReturn;
}
Change the while-condition to ! thisSpot.equals (par.getPosition())
Change the middle statement to the following:
boolean valueToReturn = this.seesSlot();
public boolean isAtOneGivenPosition (String one, String two)

{ return one.equals (this.getPosition()) || two.equals (this.getPosition());

public void moveToCorrespondingSlot (Vic par)
{ String thisSpot = this.getPosition();
while (this.seesSlot() && par.seesSlot())
{ if (par.seesCD() && ! this.seesCD())
{ par.takeCD();
this.putCD();

this.moveOn();
par.moveOn();

while (! thisSpot.equals (this.getPosition()))
{ this.backUp();

par.backUp();
}

Remove the exclamation mark from the if-condition.
Modify the hasAsManySlotsAs method in Listing 3.5 as follows:
Replace "boolean” by "Vic" in the method heading.

Replace the statement between the two while-loops by the following:

Vic valueToReturn;
if (this.seesSlot())
valueToReturn = par;
else
valueToReturn = this;
while (seesSlot())
{ moveOn();
if (this.seesSlot())
this.moveOn();
else
movedInPairs = false;

Replace "while (seesSlot())" by the following two lines:
boolean found = false;

while (seesSlot() && ! found)

Replace "return true" within the loop by "found = true".
Replace "return false" at the end by "return found".

3-32

Int-1 Java Au Naturel by William C. Jones Int-1

Interlude: Integers And For-Loops

The next two chapters, Chapters Four and Five, explain how you store data values in
objects using instance variables and how you store data values in classes using class
variables. You use these language features in defining object classes that depend only
on the Sun standard library. For this material, you will need to know how to store and
work with whole-number values. This Interlude collects this information in one place, so
that the following two chapters can concentrate just on language features for defining
your own classes from scratch.

You have previously seen that a variable declared as type boolean can store either of
the values t r ue and f al se. You may assign to a boolean variable the result of a call of
a boolean method or the result of combining boolean values using any of the three
operators ! (meaning "not"), & (meaning "and"), and || (meaning "or").

You may also declare a variable as type int (rather than e.g. String or boolean). This
means that you can store a whole-number value in that variable, as long as it is in the
range plus or minus 2,147,483,647. The reason for that limit is that the storage space set
aside for these whole-number values is limited to 31 base-two digits along with a plus or
minus sign, and 2> is 2,147,483,648, just slightly over two billion.

Increment and decrement operators

The following method could be in a subclass of Vic. It tells how many slots the Vic has.
First, the original position is recorded in spot . Then each time the first while-loop moves
forward in the sequence of slots, count isincremented by 1. When it runs out of slots,
the second while-loop backs up to the original position. Then count is returned as the
answer to the get Nuntl ot s() query. Reminder: The body of a while-statement must
be enclosed in braces { } unless it consists of only one statement:

public int getNunSlots()

{ String spot = getPosition();
int count = O;
whil e (seesSlot())
{ count ++;

moveOn() ;

}

while (! spot.equals (getPosition()))
backUp();

return count;
} | | =======================

The ++ symbol is the increment operator; it adds 1 to the int variable to which it is
appended. So the expression count ++ changes the value of count to be 1 more than
its current value. Java also has a decrement operator, e.g., the expression nunt -
would subtract 1 from the value stored in the numvariable:

A method that returns an int value does so analogously to methods that return boolean
values: You specify int in the heading as its return value and then have one or more
statements consisting of r et ur n followed by an int value. As with any ret urn
statement, executing this statement immediately stops execution of the method.

You may also have int variables as parameters. The following method could be in a
subclass of Turtle; a sample call of this method is t i na. makeSquar e(40) . This
method would be much more useful than the separate makeBi gSquar e and
makeSmal | Squar e methods of the SmartTurtle class in Listing 1.3:

Int-2 Java Au Naturel by William C. Jones Int-2

public void makeSquare (int side)
{ paint (90, side);

pai nt (90, side);

pai nt (90, side);

pai nt (90, side);
} | | =======================

Arithmetic operators for integers

A binary operator is a symbol which combines two values to obtain a new value. Those
two values are the operands of that operator. Forinstance, & and || are binary
operators. By contrast, ! is a unary operator: You apply it to only one value (operand)
to obtain a new value. The words "binary” and "unary" come from the Latin for "two" and
"one". Java provides five binary arithmetic operators for int values:

is the integer result of adding y to x;

is the integer result of subtracting y from x;

is the integer result of multiplying y times x;

is the integer quotient after dividing y into x; and
% y is the integer remainder after dividing y into x.

X X X X X
* 1

Since x / y is awhole number, the fractional part of the division is discarded. So
12/ 4 and 13 / 4 and 15 / 4 areall 3. Since x %Yy isthe remainder from
the division, 12 % 4 is 0 and 13 % 4 is 1 and 15 % 4 is 3. Negative numbers
can be tricky: (-13) / 4 is -3 andso (-13) %4 is -1.

Caution If one operand of an arithmetic operator is formed with another
arithmetic operator, you should use parentheses around that operand to
make your meaning clear. The compiler applies normal algebra rules for
clarifying an expression suchas x + y * z, butitis safer to
parenthesize. This book does so except for repeated additions.

Comparison operators for integers

Java has six binary operators which compare two numbers to obtain a true-false value:

X >y means X is greater than y;

X <y means x is less than y;

X <=y means x is less than or equal to y;

X >=y means X is greater than or equal to y;

X ==y means x equals y (note the DOUBLE equals-sign);
x =y means x is NOT equal to y.

You could generalize the earlier makeSquar e method to make any triangle, square,
pentagon, or other regular polygon, by supplying a second int parameter that tells how
many degrees to rotate each time (t ur n must evenly divide 360 for this to work right). In
this method, the statement total = total + turn; means thatyou first calculate
the sum of t ot al and t ur n and then store the resultin t ot al :

public void makeRegul ar Pol ygon (int turn, int side)
{ paint (turn, side);
int total = turn;
while (total < 360)
{ paint (turn, side);
total = total + turn;

Int-3 Java Au Naturel by William C. Jones Int-3

Strings concatenated with ints and objects

String and int are two different types of values. Java is strongly typed, which means that
there are strict limits on assigning a value of one type to a variable of another type. In
particular, you cannot assign an int value to a String variable or return an int value when
a String value is to be returned. Nor can you assign a String value to an int variable or
return it from an int-returning method. However, the concatenation operator + will
combine a String value and an int value into a String value by treating the int value as if it
were a numeral, i.e., the string of digits as you would normally write them. So "a" +
572 isthe string "a572" and "8" + "4" isthe String value "84".

The following method call prints the value of the String parameter in the terminal window
(often called the DOS window). The method call usually has a concatenation of a String
and a numeric value as its parameter, to help in tracing the execution of the program:

Systemout.println ("the value of x is + X);

If a method is to return a String value and you have declared i nt x inthat method, the
statement return x; would not even compile, because you cannot return an int value
when a String value is required. But concatenating the empty String "" with the int
value makes a String value expression, and it is legal to return that value from the
method. So you could have return "" + x; as a statement in the method.

General principle When you "add" a String value to anything, you always get a String
value. This definition of the plus sign makes coding in Java easier. The compiler
expects that you made a mistake if you assigned a non-String value to a String variable
or returned a non-String value from a String method. But if you explicitly add ™ to a non-
String value, you are both acknowledging and correcting the incompatibility.

Java allows variables to be declared as type doubl e as well as i nt , which means they
can store numbers with decimal points (such as 4.7 and -0.53). Chapter Six contains
detailed discussion of the use of this type of number. We do not need it until then.

L anguage elements
A Statement can be: VariableName ++ ;
or: VariableName -- ;

You may use int as the declared type of avariable or as the return type of a method.

Anint literal is a sequence of digits, optionally preceded by a negative sign.

The operators that combine two int valuesto get anint valueare + - * / %

The operators that combine two int valuesto get aboolean valueare > < == 1= >= <=
Y ou may use a plus sign between a numeric value and a String value. This concatenates the
numeral with the string of characters.

Loop controls

The makeBi gSquar e() method of the Turtle class (Section 1.4) contained just four
statements, each being the command pai nt (90, 40) . And the makeHexagon()
method contained just six statements, each being the command pai nt (60, 30). The
following expresses the same logic using while-statements:

public void makeBi gSquar e() public void makeHexagon()
{ int k =0; { int k =0;
while (k < 4) while (k < 6)
{ paint (90, 40); { paint (60, 30);
kK++; kK++;
} }

Int-4 Java Au Naturel by William C. Jones Int-4

In each case, the while-statement tests the value of k to see if the loop should continue
(k < soneVal ue). Since k is the only variable in the continuation condition whose
value is changed by the loop, it is the loop control variable in each case. The while-
statement is preceded by an initializer step i nt k = 0, to assign the starting value of
the loop control variable. And the last statement in each loop is an update step k++,
whose purpose is to modify the value of the loop control variable.

The for-statement

Java's for-statement allows us to bring these three intimately-connected parts of the logic
together in one place, to make the overall structure clear. Those two earlier methods can
be written as follows with exactly the same effect:

public void makeBi gSquar e()
{ for (int k =0; k <4; k++)
pai nt (90, 40);

public void nmakeHexagon() |initia|izer
{ for (int k =0; k <6; k++)
pai nt (60, 30);

Ingeneral, for(initializer; condition; condition > 4. o
update){...} isaloop that executes as long

as the condition is true, with the initializin

command executed just before the first itgration false
and the updating command executed at the end
of each iteration. The two semicolons are
required inside the parentheses. As with the for (initializer; condition; update)
other structured statements using i f and whi | e, statement

you may omit the braces around the subordinate

part of a for-statement if it is just one statement.

Figure 1 Flow-of-control for
the for-statement

The makeRegul ar Pol ygon method shown earlier in this Interlude can be written using
a for-statement as follows. It illustrates the fact that that the loop control variable does
not always have to increment or decrement by 1 each time:

public void makeRegul ar Pol ygon (int turn, int side)
{ for (int total = 0; total < 360; total =total + turn)
paint (turn, side);

You are not required to declare the loop control variable in the initializing step. But if you
do declare a variable in the initializing step of a for-statement, the compiler does not allow
you to mention it outside of the for-statement.

Progressing through a sequence of integers
The following method finds the first power of 2 that is greater than a given int value:

public int powerGeaterThan (int given)
{ int power;
for (power = 1; given >= 1; power = 2 * power)
given = given / 2;
return power;
} | | =======================

Int-5 Java Au Naturel by William C. Jones Int-5

However, this is going too far. If you are undisciplined in the use of the for-statement, it
loses its basic meaning of "continuation condition together with the update of the variable
on which the continuation condition depends". It is not a coincidence that the preceding
for-statements have an integer as the loop control variable. The common features in the
earlier examples are as follows:

The updating phrase moves the loop control variable one step further in a sequence
of integers or the equivalent.

The body of the for-statement does not change the position of the loop control
variable in the sequence of integers.

The continuation condition stops the loop when the loop control variable reaches the
end of the sequence of integers, if not before.

Programming Style Some programmers use a for-statement wantonly,
ignoring its basic meaning. This book restricts the use of the for-statement to
situations with the three features above. It is also good style to declare the
loop control variable in the for-statement heading where possible.

There are some cases in which the loop control variable is given its initial value several
statements before the for-statement. You may leave out the initializer step in such a
case, so that the first thing inside the parentheses of the for-statement heading is a
semicolon. But the two semicolons are required in the heading of the for-statement even
when the initializer step is missing.

Caution When the body of a for-statement or while-statement is a single
statement rather than something in braces, that single statement cannot be
a variable declaration. Similarly, when one of the two subordinate parts of
an if-statement is a single statement not within braces, the statement cannot
be a variable declaration. For example, the compiler does not allow the
phrase if (x ==vy) int max = z;.

The do-while statement

You have now seen two looping statements in Java, the while-statement and the for-
statement. Java has one more, the do-while statement. The following coding does
exactly what a while-statement would do, repeatedly executing the two statements,
except that no test of the condition is made until after the first time through the loop:

do

{ paint (turn, side);
total = total + turn;

}while (total < 360);

staterment
The need for the do-while statement rarely arises. We will
not use it in this book except in case studies at the ends of
Chapters Four and Five.

Programming Style The do-while statement is
one case where you should put something on
the line with the ending brace. Do it because, if
the while-part were on the next line, it would

deceive people into thinking it is the beginning of do
a new while statement instead of the end of a do-while statement
statement. Deceiving people is not good style. You will while {condition);
further avoid confusion if you use braces around the
body of the do-while statement even when it has only Figure 2 Flow-of-control for

one statement in it. the do-while statement

Int-6 Java Au Naturel by William C. Jones Int-6

L anguage elements
A Statement can be: for (Initidlizer ; Condition ; Update) Statement
or: for (Initidlizer ; Condition ; Update) { StatementGroup }
or: do { StatementGroup } while (Condition) ;
An Initializer can be: int VariableName = Expression
or: VariableName ++
or: VariableName --
or: VariableName = Expression

The Update part can be an assignment or a method call.
Any one of the three parts of afor-statement can be left out, but keep the two semicolons.
If the condition is |eft out, the loop continues until a return statement in its body is executed.

Exercise 1 Ifxis23 andyis5,whatare x / vy, (x+1) / y,and (x+2) [/ y?
Exercise 2 Ifxis23 andyis 5, whatare x %y, (x+1) %y,and (x+2) %y?
Exercise 3 How would you revise the get Nuntl ot s method in this section to return the
number of slots that contain CDs?

Exercise 4 Write a method publ i ¢ voi d Fi veCircl es() for asubclass of Turtle:
The executor draw five circles, all with the same center, but with diameters of 60, 120,
180, 240, and 300. Use a for-statement.

Exercise 5 Write an action method for a subclass of Turtle that has the executor print
the word "Hi" seven times, moving ahead 20 pixels after each word. Use a for-statement.
Use a parameter for 7.

Exercise 6 How many times does each of the following print "Hi"?

(@for (int k -4; k <=5; k++) Systemout.println ("H");
(b)for (int k =-2; k < 8; k++) Systemout.println ("H");
(c)for (int k = 3; k >= -6; k--) Systemout.println ("H");
Exercise 7 Rewrite the while-statement in the main method at the end of Section 3.1 as
a do-while statement.

Answers to Exercises

1 23/5is4. 24/5is4. 25/5is5.
2 23%5is3. 24%5is4. 25%5is 0.
3 Replace the count++ statement by: if (seesCD()) count++;
4 public void FiveCircles()
{ for (int radius = 30; radius <= 150; radius = radius + 30)
swingAround (radius);
}
5 public void ManyHi (int numWords)
{ for (intk = 0; k < numWords; k++)
{ say ("HI");
move (0, 20);
}
}
6 (a) 10 times. (b) 10 times; (c) 10 times.
7 do

{ sequence.takeCD();
sequence = new Vic();
}while (sequence.seesSlot());

4-1 Java Au Naturel by William C. Jones 4-1

4 Instance Variables

Overview

So far you have derived new classes that extend what objects can do. This chapter
shows you how to derive new classes that extend what the objects know. These
programs will be developed entirely with classes from the Sun standard library. So you
will be able to run these programs without having the Vic or Turtle class or their analogs.

This chapter introduces a new context for learning about object-oriented software design.
You are to develop several programs, each allowing the user to play a game against the
computer. Some examples of such games are Checkers and Solitaire (although these
particular games are not developed in this chapter). You only need study through
Section 4.7 to understand the material in the rest of this book.

Section 4.1 develops the overall analysis and design for game programs.

Section 4.2-4.5 describe language features you will need for these game programs:
graphical input/output, instance variables, constructors, and whole numbers.
Section 4.6 implements fully a game of guess-my-randomly-chosen-number.
Sections 4.7-4.8 explain overloading, overriding, polymorphism, and precedence.
Sections 4.9-4.10 implement fully the games of Nim and Mastermind, as further
examples of analysis and design.

4.1 Analysis And Design Of A Game Program

The computer games we develop will all have the same general structure. To get a fix on
that structure, we begin by creating a prototype, a program that has the proper structure
but plays a very trivial game. This gives us a solid foundation for the real games.

For this trivial game, the user tries to guess the secret word the computer has chosen. It
is trivial because the secret word is not so secret -- it is "duck”. The main application only
needs to create a game-playing object and tell it to play. This straight-line logic is shown
in Listing 4.1. For any of the more complicated games to be developed later, the main
application would be the same except with "BasicGame" changed to "Mastermind" or
"TicTacToe" or "Checkers" or whatever is appropriate.

Listing 4.1 A game-playing application program

public class GaneApp
/** Play the basic gane repeatedly until the user tires. */

public static void main (String[] args)

{ BasicGne gane; /'l declare the gane variabl e
gane = new Basi cGne() ; /] create an object to put in it
gane. pl ayManyGanes() ; [/l tell the object to play
Systemexit (0); // termnate the GJ interface

|

}

The System exit(0) command simply terminates the program. You have to have it
in Listing 4.1 because the game-playing object will use a graphical interface. On some
computer systems, the computer will lock up if you finish running a program that has a

4-2 Java Au Naturel by William C. Jones 4-2

graphics interface but never execute the System exit (0) command. You did not
have to put this command in your Vic programs because it is already in the method that
reacts to clicking the X-shaped window-closer icon in the top right corner of the window.
System is a class in the Sun standard library, and exi t is a class method in System.

Analysis and logic design

The way the computer plays many games is quite simple: First it plays a game. Then it
asks the user if he/she wants to play another game. If the answer is no, the process
stops, otherwise the computer plays another game and the cycle repeats. This general
process applies to any of the several games we will develop. That is, once we have
implemented it for a BasicGame, we can use that implementation for other games such
as Checkers or Chess.

The progress of any one of these games is as follows: First set up the initial state of the
game (in Mastermind, choose a 3-digit random number; in TicTacToe, create an empty
3x3 board; in Checkers, create an 8x8 board with 12 red and 12 black pieces placed in
the appropriate squares; etc). Second, ask the user for his/her first move in the game.
Then see whether that move wins the game (in almost all games, it will not) or, for that
matter, loses the game.

If the user's move does not terminate the game, the computer makes its move in
response or takes whatever action is appropriate, then the user takes another move or
makes another choice. This cycle continues until the game is over. A reasonable plan
for the logic design of the BasicGame is shown in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for BasicGame's playOneGame
1. Ask the user for his/her first guess.
2. Repeat the following until the current guess is completely right...
2a. Tell the user he/she is wrong, and give a hint.
2b. Ask the user for his/her next guess.
3. Tell the user that he/she has finally gotten it right.

This logic can be implemented with the following coding for the playOneGame method.
As usual, empty parentheses indicate a method that has no parameters:

public void playOneGane()
{ askUsersFirst Choice();
whi | e (shoul dConti nue())
{ showUpdat edSt at us();
askUser sNext Choi ce() ;

}
showFi nal St at us();
} | | ======================

Asking the user whether another game is to be played, or asking for the next guess,
requires a method for getting input from the user. And telling the user that the guess is
right or wrong requires a method for displaying output to the user. The next section
introduces methods from the Sun standard library that allow this.

4.2 Input And Output With JOptionPane Dialog Boxes

The various compiled classes are organized into categories called packages. You
simply put package X; as the top line in a file to make the class in that file be in
package X. If you do not specify a package for a class when you compile it, its package
is the folder on the hard disk where its file is stored.

4-3 Java Au Naturel by William C. Jones 4-3

The JOptionPane class

The JOptionPane class is in the j avax. swi ng package (technically, swing is the
"subpackage" of the javax package). JOptionPane provides some components for a GUI
(Graphical User Interface). A file containing a class that uses the JOptionPane class
should have the import directive i nport javax.sw ng. JOpti onPane; atthe top
of the file. This line directs the compiler to look in the Sun standard library package
named j avax. swi ng for the class. If you do not have the import directive, the
compiler is not able to find JOptionPane.

The System and String classes are in the standard j ava. | ang package, which the
compiler automatically makes available to every class. If you want to use any class that
isnotin java.l ang or inyour current package, you have to give an import directive to
tell the compiler where to find it. You need one import directive for each such class,
except if you use several classes from the same package, e.g., j avax. swi ng, you may
have i nport javax.sw ng.*; as a shorthand for all import directives for classes
from that same package.

The showMessageDialog method

The JOptionPane class has three class methods that we will use (i.e., you call them with
the class name in place of the executor object). One of these is the

showessageDi al og method that displays a small rectangle containing a message. It
does not ask for user input. An example of its use is as follows:

JOpt i onPane. showMessageDi al og (null, "H there!");

The first parameter of the showMessageDi al og method call is the window to display the
dialog box in. When this window value is nul | , the value that indicates the absence of
an object, the dialog box appears in the middle of the monitor screen. This is the only
way we will use the showMessageDi al og method.

The second parameter of showMessageDi al og is the message to be displayed. In the
preceding example, it is characters in quotes, called a String literal. The right side of
Figure 4.1 shows an example of what such a message dialog box looks like.

j 7
What is your last narme? | ﬁ Reversed it is Borges, Jorge

[Borges|

| OK || Cancel |

Figure 4.1 Screen shots of calls of showMessageDialog and showInputDialog

If you want to display several lines on this dialog box, you should use the \ n symbol in
the String literal. Each such use causes the start of a new line; " \ n' is called the
newline character. So "Hi \nthere \nCathy" displays those three words on three separate
lines. The showFi nal St at us method of the BasicGame class need only print out a
message saying the user guessed the secret word right, so it could have this statement:

JOpt i onPane. showMessageDi al og (nul |,
"That was right. \nCongratulations.");

4-4 Java Au Naturel by William C. Jones 4-4

The showlInputDialog method

The showl nput Di al og method in JOptionPane displays a small rectangle containing a
given string of characters (the only parameter). Then it waits until the user types
something in the empty text box and presses the OK button or the ENTER key. When
the user does so, the method returns the string of characters the user typed. The left
side of Figure 4.1 shows what this dialog box looks like (the vertical line is the cursor).
For instance, the askUser sNext Choi ce method of the BasicGame class could consist
of the following statement, storing the input in a String variable named i t sUser s\Wor d:

itsUsersWwrd = JOpti onPane. show nput D al og
("CGuess the secret word: ");

Listing 4.2 is an application program that illustrates the use of these two JOptionPane

methods. It asks the user for the user's first name and last name, stores each in a String
variable, then prints them out in reverse order with a comma between them (e.g., "Jones,
Bill"). It needs the Syst em exi t (0) because it uses JOptionPane's graphic interface.
Figure 4.1 shows what you might see on the screen when the program runs. Note: This
is one of the few application programs in this book that does not call an instance method.

Listing 4.2 An application program illustrating the use of JOptionPane

i mport javax.sw ng. JOpti onPane;

public cl ass NaneChange

{
[** Ask the user for his/her first nane, then for the |ast
* npame, then print themout in the opposite order. */
public static void main (String[] args)
{ JOptionPane. showvessageDi al og (null,
"Illustrate the use of JOptionPane net hods");
String firstName = JOpti onPane. show nput Di al og
("What is your first nane?");
String | ast Name = JOpti onPane. showl nput Di al og
("What is your |ast name?");
JOpt i onPane. showMessageDi al og (nul |,
"Reversed it is " + lastNanme + ", " + firstNane);
Systemexit (0); /1 needed when using JOpti onPane
|
}

The next-to-last statement of Listing 4.2 uses a plus sign between pairs of String values
to indicate that the message is a single String value obtained by combining the four
String values into one long String value. This is concatenation of string values.

The showConfirmDialog method

JOptionPane also has a method that asks a yes/no question (supplied as a String for the
second parameter; the first parameter is again nul |). If the user clicks the YES option,
the value returned is an int value named YES_OPTION, defined in the JOptionPane
class. The == operator tests the value to see if it equals the YES_OPTION, so the
following logic could be used for the pl ayManyGanes method of the BasicGame class:

pl ayOneGane() ;
whi l e (JOptionPane. showConfirnDialog (null, "again?")
== JOpti onPane. YES_OPTI ON)
pl ayOneGane() ;

4-5 Java Au Naturel by William C. Jones 4-5

As usual, we can omit the braces around the body of the while-statement when it only
contains one statement. Note: Due to a glitch in this Sun standard library method, the
user cannot just tab over to the NO or CANCEL option and then press the ENTER key;
the user must actually click NO or CANCEL to terminate this loop.

The null value

The value null is a special value that can be assigned to any object variable. It indicates
the absence of a reference to an actual object. For instance, if samrefers to some String
object and you do not want it to do so anymore, execute the command sam = nul | .
That erases the object reference in sam samthen refers to no object at all, so of course
you cannot execute sam equal s(x) or any other such method call -- it would not make
sense to ask a nonexistent object to answer a question or to perform an action.

If the user clicks the OK button in response to the show nput Di al og message without
entering any value, it returns the empty String, a String with no characters, written as " "
But if the user clicks the Cancel button or the closer icon in the upper-right corner, the
method returns the nul | value. Your coding must allow for these two possibilities.

Indenting a Java program

Programming Style In Listing 4.2, four of the five statements do not fit on one
line. It is good style in such cases to strongly indent the continuation of the
line, so a reader does not think it is a separate statement. The line break
should come after a comma or semicolon or before a left parenthesis or an
operator (such as + and >).

In general, it is good programming style to indent your Java logic in the conventional way:

1. Indent one tab position for the heading of a method and two tabs for its body.

2. Indent one extra tab position for a statement subordinate to i f, whi | e, do, or for
(the for-statement is described in Chapter Five).

3. Indent two extra tab positions or more for a continuation of a program line onto the
next line.

4. Indent almost nowhere else.

L anguage elements
Y ou may put an import directive before the first classin afile. Use one of these two formats:
import PackageDescription . ClassName ;
import PackageDescription . * ;
The value null may be assigned to any object variable or otherwise used as an object value.
The \n sequence within quotes indicates that the start of a new output line occurs at that point.

Exercise 4.1* Write an application program that asks the user for two strings of
characters and then tells whether they are equal to each other.
Exercise 4.2* Draw the UML class diagram for Listing 4.2.

4-6 Java Au Naturel by William C. Jones 4-6

4.3 Declaring Instance Variables: A First Look At Encapsulation

The only way you have previously seen to store information is in variables declared within
a method. Those variables "belong" to the method and only exist during a single
execution of the method . But in order for a BasicGame object to do what it has to do,
such as decide whether the current game should continue, it needs to know two things:
What is the secret word and what is the user's most recent choice. Information is stored
in variables, but a local variable is not suitable for this information.

Declaring instance variables

You need to store these two pieces of information as part of the BasicGame object. Java
indicates this relation by having the variables declared outside of any method to
distinguish them from local variables. You could name them i t sSecr et Wor d and

i tsUser s\Wor d. They are called instance variables, because each instance (object) of
the BasicGame class has its own separate values stored in these variables.

These two instance variables are declared as private variables in the BasicGame class.
This means that methods outside of the BasicGame class cannot access them directly. It
is legal to declare them as public instead, but we rarely do that with instance variables.
Bugs in a program are usually easier to avoid if we prevent direct access by outsiders to
the instance variables of objects. This is called encapsulation. Since this simplest of all
games has the secret word "duck”, and the user has made no guess when the game is
first created, the BasicGame class contains the following two declarations:

private String itsSecretWrd = "duck";
private String itsUsersWwrd = "none";

Each time a BasicGame object is created, it is given these two variables, where the initial
value of the first is "duck” and the initial value of the second is "none". These declarations
are exactly the same as for local variables except they have pri vat e at the beginning.
Note: Some books define encapsulation more generally, to mean keeping data and
objects together in one class so that outside classes can access variables only indirectly,
through method calls that protect against inappropriate changes.

Using instance variables

Suppose sam refers to an instance of a class that has an instance variable soneVar .
Then sam soneVar is the someVar variable belonging to the object sam refers to.
Within an instance method, t hi s. soneVar is the variable that belongs to the executor,
and so is just plain someVar (using the default executor).

This is analogous to what you already know about instance methods: If sam refers to
an instance of a class, then sam soneMet hod() calls the soneMet hod belonging to
the object sam refers to. Within an instance method, t hi s. someMet hod() calls the
method that belongs to the executor, and so does just plain soneMet hod() .

Listing 4.3 (see next page) shows the complete BasicGame class. Some people prefer to
put the instance variables first in the class, as shown, and others prefer to put them last
in the class. The order of the declarations of instance variables and instance methods in
a class generally has no effect on whether the class compiles or how it executes.

The logic of the methods for the basic game in Listing 4.3 was discussed earlier:

askUser sFi r st Choi ce stores the input in the game's own variable named
itsUsersWrd.

Java Au Naturel by William C. Jones

4-7

shoul dCont i nue is true whenever the two words are not the same word. The
equal s method for Strings tests whether two objects have the same contents. If the
user clicked Cancel, the input is nul | , and the equal s method returns f al se when

the parameteris nul | .

askUser sNext Choi ce does the same as askUser sFi r st Choi ce for this game.

The two methods that show the status simply print an appropriate message.

Listing 4.3 The BasicGame class of objects

i mport javax.sw ng. JOpti onPane;

public class Basi cGane extends Object

{

private String itsSecretWrd = "duck";
private String itsUsersWwrd = "none";

public void playManyGanes()
{ playOneGne();
whi | e (JOpti onPane. showConfirnDialog (null, "again?")
== JOpt i onPane. YES_ OPTI ON)
pl ayOneGane() ;

} oI

public void playOneGane()
{ askUsersFirst Choice();
whi | e (shoul dCont i nue())
{ showUpdat edSt at us() ;
askUser sNext Choi ce() ;

showFi nal St at us() ;
Y} o/

public void askUsersFirst Choi ce()
{ itsUsersWword = JOptionPane. show nput Di al og
("CGuess the secret word:");

} oI

publ i ¢ bool ean shoul dConti nue()
{ return! itsSecretWrd.equals (itsUsersWrd);
|

public void showUpdat edSt at us()
{ JOptionPane. showvessageDi al og (null,
"That was wong. Hnt: It quacks.");

1y

public void askUser sNext Choi ce()

{ askUsersFirstChoice(); // no need to wite the coding again

1y

public void showFi nal St at us()
{ JOptionPane. showvessageDi al og (null,
"That was right. \nCongratulations.");

} oI

4-8 Java Au Naturel by William C. Jones 4-8

The state of an object is determined by its instance variables. They give the object its
"personality”. A method that modifies the executor's state and does nothing else is a
mutator method (a special kind of action method, e.g., askUser sNext Choi ce). A
method that merely accesses the executor's state is an accessor method (a special kind
of query method, e.g., shoul dCont i nue).

The Object class

The superclass for the BasicGame class is the Object class. Object is a class in the Sun
standard library. Itisinthe j ava. | ang package, which means you do not need an
import directive to help the compiler find it. The Object class is the ultimate superclass of
every class in Java,; if you define any class without an ext ends phrase, the compiler
supplies the default extension ext ends Cbj ect. So we could have left that phrase
out of Listing 4.3 with no difference in effect. This book leaves it out for classes that do
not have any instance methods or instance variables.

The Object class contains a method named toString. It returns a String equivalent of the
object. A plus sign between a String value and an object reference x causes the object
reference to be interpreted as x. t oSt ri ng(), using that object's t oSt ri ng method.
So if nowis an object variable for which now. t oSt ri ng() has the value "0730",
then the phrase "now = " + now has the value "now = 0730".

Exercise 4.3 Revise the shoul dCont i nue method to change the secret word to
"goose" for the second and later guesses if the first guess is not "duck".

Exercise 4.4 Revise the BasicGame logic so that the user gets it right after at most five
guesses, as follows: Add an instance variable initialized to be the empty String at the
start of each game. Concatenate "x" to it every time the user makes a guess. Then
count whatever answer the user gives as right when that instance variable has the value
"XXXXX"

Exercise 4.5* Revise the BasicGame logic so that the user who takes more than three
guesses to get it right will never succeed in guessing the right answer. Hint: See the
preceding exercise.

Exercise 4.6* Explain the difference between an instance variable and a local variable.

4.4 Defining Constructors; Inheritance

When you create a new object, asin sam = new Snart Turtl e() or sue = new
Vi c(), you do it by calling on a constructor method in that class. If you (or whoever
developed the class) did not provide one or more constructor methods, the compiler
provides one for you by default. It is as follows for the SmartTurtle class:

public SmartTurtle() // default constructor
{ super();
Yo/

This default constructor (supplied by the compiler) is the method that sam = new
Smart Turtl e() calls, since the SmartTurtle class (Listing 1.3) does not explicitly
define a constructor. The default constructor says you construct a new SmartTurtle
object by doing nothing but calling the constructor method of the superclass of the
SmartTurtle class. That is, of course, the Turtle class. The Turtle class provides an
explicit constructor which the SmartTurtle constructor calls with the command super () .

4-9 Java Au Naturel by William C. Jones 4-9

The default constructor for the BasicGame class or any other class is the same as the
above except of course the method heading is different, e.g.:

public BasicGane() // default constructor
{ super();

super () calls the no-parameter constructor of the superclass, which for BasicGame is
the Object class. The Object class has a number of instance variables and methods that
all objects need. One instance variable tells the class of the object, so the runtime
system can inspect it to see what methods it is allowed to call. Another instance variable
keeps track of information that the automatic garbage collection process needs. These
Object instance variables are private, so you cannot access them in a program.

Explicitly defined constructors

When you define a class for which you want something more than what the default
constructor gives you, you have to define the constructor(s) explicitly in the class. The
first statement should always call super () (or its equivalent, discussed later).
super () is only allowed for the first statement of a constructor.

Listing 4.3 specifies initial values for the two instance variables of a BasicGame. An
alternative is to not have an assignment in the declaration, but to assign the value in the
constructor itself. That is, the two lines declaring the instance variables in Listing 4.3
would be replaced by the following variable declarations and constructor:

private String itsSecretWrd;
private String itsUsersWrd;

publ i c BasicGane() /1 constructor
{ super();

itsSecretWword = "duck";

itsUsersWwrd = "none";
} | | =======================

There is no reason to do so in this case, but usually it is necessary. For example,
suppose you want a Vic object to be able to answer the question, "Was your first slot
empty when you were created?" The answer is t r ue if the Vic saw a slot but did not see
a CD in that slot. You could test soneVi c. first\WasEnpty() atany time if you have
the following instance variable and two methods in a subclass of Vic:

public class GoodVic extends Vic

{
private bool ean itsFirst\WasEnpty;
public GoodVic() /1 constructor
{ super();
itsFirst\WasEnpty = seesSlot() & & ! seesC);
} | | =======================

public bool ean firstWasEnpty()
{ return itsFirstWasEnpty;
} | | =======================

4-10 Java Au Naturel by William C. Jones 4-10

Inheritance

An inconvenience with Vics is that you cannot return to the front of the sequence
because you do not know how far back to go. That can easily be fixed if you define the
following class of objects that know their starting position:

public class BasicVic extends Vic

{
private String itslnitial Position;
public BasicVic() /1 constructor
{ super();
itslnitial Position = getPosition();
} | | =======================
public void returnToStart ()
{ while (! itslnitialPosition.equals (getPosition()))
backUp();
} | | =======================
}

Now if you change the heading on any subclass of Vic to say ext ends Basi cVic
instead of extends Vi c, itinheritsthe ret urnToSt art method. Then you can
execute samreturnToStart () forany object sam of that subclass, to have sam
repositioned at the front of its sequence. Reminder: A subclass inherits all public
methods and variables of the superclass it extends, i.e., it can refer to them as if they
were defined in the subclass.

Parameters of constructors

A constructor may have one or more parameters. For instance, you might want to define
a class of objects that remember their first names and their last names and can provide
them on request. The Person class in the upper part of Listing 4.4 (see next page) is
such a class. You then must supply both nhames when you construct a new Person
object, as in the following statement:

al = new Person ("Jorge", "Borges");
String full Name = al .getFirstName() + " " + al.getLastNane();

The constructor in the Person class illustrates the most commonly used format for
constructors, namely, the parameters supply the initial values of instance variables. You
could call it the natural constructor, since the primary purpose of a constructor is to
initialize all instance variables.

To develop software for a hospital, you might define Patient as a subclass of Person.
Then the first statement in the Patient constructor is the super call of the constructor
from its superclass, which is Person. Constructing a Person object requires supplying the
first and last name. So Patient's super call must include those two parameters to
initialize the private instance variables in the Person superclass. You cannot use plain
super (), since the Person class does not have a constructor with no parameters.
Therefore, part of the Patient class could be as shown in the lower part of Listing 4.4.

It is legal to omit the call of super , though this book does not do so. If you do so, the
compiler inserts super () (i.e., no parameters) in your constructor by default. So the
super statement in the Person constructor is optional, but the explicit call of super in
the Patient constructor is required because the insertion of super () would call a non-
existent constructor with no parameters, which the compiler will not allow.

4-11 Java Au Naturel by William C. Jones 4-11

Listing 4.4 The Person class of objects

public class Person extends Object

{
private String itsFirstNane;

private String itsLastNane;

public Person (String first, String |ast) /1 constructor
{ super();

itsFirstName = first;

i tsLast Name = | ast;
|

public String getFirstName()
{ return itsFirstNane;
|

public String getLast Nane()
{ return itsLast Nane;
|

}
[| #HBHHHBHHHBHHH B H B H B H A H A H A H A H A H A H A H R H R

public class Patient extends Person

{
private String itsDoctor;
public Patient (String first, String |last, String doc)
{ super (first, last);
i tsDoctor = doc;
|
}

Name shadowing

Caution A method is allowed to have a local variable or parameter with the
same name as an instance variable. But it usually causes trouble. Within
that method, the instance variable is shadowed: Use of the variable name
is a reference to the locally declared variable, not to the instance variable. A
common logic error is to "redeclare" an instance variable; e.g., to write the
last statement of the Patient constructor as String itsDoctor = doc. That extra
word String means you are declaring a new variable named i t sDoct or local to the
method. The compiler will not point out that it is surely not what you meant to do.

A related error occurs in the Patient constructor if you name the instance variable doc,
the same name as the parameter, and so the last statement is doc = doc. This merely
assigns the value of the parameter to the parameter, not to the instance variable. This
form of assignment is never necessary and usually indicates a logic error in the program.

This book puts a prefix of "its" on almost all instance variables and never anywhere else.
This hallmark makes both of the above-mentioned bugs less likely. Some people prefer
the prefix "my", as in nyFi r st Nane, nyLast Nane, myDoct or . If you do not do this sort
of thing in your own definitions, at least obey the following safety principle: Never name a
parameter or local variable the same as an instance variable.

4-12 Java Au Naturel by William C. Jones 4-12

Default variable values

If you do not assign a value to an instance variable in its declaration, the compiler
assigns one for you: The default initial value is nul | for any object variable (such as
String), f al se for any boolean variable, and zero for any other variable. You may re-
initialize this value during execution of the constructor.

Programming Style All instance variables in this book are explicitly initialized to
a value even if it is what the default would give. This makes programs clearer.
The initialization is normally made in the declaration rather than the constructor
when possible, to make it clear to the reader that the initial value does not
depend on the constructor's parameters.

The use of this for instance variables

If the body of instance method X contains a method call without saying which object is its
executor, then its executor is by default the executor of X. The same principle applies to
instance variables: If the body of instance method X mentions an instance variable
without saying which object it belongs to, it is by default a use of the executor's instance
variable. Since the keyword t hi s can be used in an instance method to refer to the
executor of the method, the statement in the Person's get Fi r st Name method of Listing
4.4 could be written as return this.itsFirstNane; todothe same thing.

A constructor method is technically neither a class method nor an instance method,; it is a
method of constructing objects of the class. Within a constructor definition, the use of an
instance variable without saying which object it belongs to is by default a use of the
instance variable of the object being constructed (the same is true of instance methods).
The pronoun t hi s refers to the object being constructed. So the last two statements of
the Person constructor in Listing 4.4 could be written as follows without changing the
constructor's effect:

this.itsFirstNane = first;
this.itsLast Name = | ast;

Caution Do not assign avaluetot his,asin this = whatever; itis
never necessary, and it is almost always an indication of an error in logic.

L anguage elements

Instance variables are declared outside of any method. Y ou may use one of these two formats:
private Type VariableName = Expression;
private Type VariableName ;

A Declaration may be: public ClassName (Parameters) { StatementGroup }
A Statement may be: super (ExpressionsSeparatedByCommas) ;

Such a statement is only allowed as the first statement in a constructor.

Exercise 4.7 Write out the default constructor for the SmartTurtle class.

Exercise 4.8 Write a RedTurtle constructor for a subclass of Turtle, in which the turtle
object always starts with the drawing color red and a due west heading.

Exercise 4.9 Define a NamedTurtle class: Objects are given a name when constructed
(via a parameter) and they tell you what the name is when you use the get Nane method
in an expression suchas sam say ("l am"™ + sam get Name()).

Exercise 4.10* Define a Terrapin subclass of the NamedTurtle class in the preceding
exercise. A Terrapin is given its name and its best friend (another Turtle object) when
constructed, and can tell you its name and who its best friend is when asked.

4-13 Java Au Naturel by William C. Jones 4-13

4.5 Integer Instance Variables

The next game to be developed uses numbers. You can store numeric information in an
instance variable of an object. For example, if you want each Person object to remember
its birth year, you could add an instance variable to the Person class of Listing 4.4 as
follows:

int itsBirthYear; // instance variable for Persons

Then the Person constructor could have a third parameter so that each construction of a
Person object supplies the birth year, as in sam = new Person ("Jorge",
"Borges", 1899). Arepresentation of this Person object is in Figure 4.2.

public Person (String first, String last, int year)

{ super();
itsFirstName = first;
i tsLast Nane = | ast;
itsBirthYear = year;
} | | =======================
Yalue of Perzon variable named sam :Person :String

itzFirstMlame & Jorge

zam o—

tzLastMame <

:String
itsBirthy ear Borges

Figure 4.2 UML object diagram for a Person object

You would also want to add to the Person class a method to allow people to ask a
Person object for its birth year with a method call such as sam get Bi rt hYear () :

public int getBirthYear()
{ return itsBirthYear;
} | | =======================

A Turtle object needs to keep track of its current position (conventionally measured from
the top left corner of the frame), and its current heading (conventionally measured in
degrees counterclockwise of a due east heading). So the instance variables might be
declared and initialized as follows:

private int itsHeading = 0; // due east
private int itsX = 380; // in the center of 760 pixels w de
private int itsY = 300; // in the center of 600 pixels tall

The Time class of objects

In some programming situations you work with clock times and you need to compute how
many hours and minutes there are between two clock times. For instance, you may need
to compute that 10:15 in the morning is 2 hours and 45 minutes after 7:30 in the morning.
You may also need to solve problems such as finding out what clock time is 2 hours and
45 minutes after 7:30 in the morning. When you add in the complexities of accounting for
afternoon versus morning, you can see that encapsulating these calculations in a class of
Time objects will simplify things greatly.

4-14 Java Au Naturel by William C. Jones 4-14
Listing 4.5 defines a class of Time objects that can track the time of day, measured in
hours and minutes since midnight. You can then have statements such as the following:
now = new Tine (7, 30); // 7:30 in the norning
wait = new Tine (2, 45); [// 2 hours 45 m nutes

[ater = now add (wait); /1 produces 10:15 in the norning

This class makes Time an abstraction, so that the development of logic that works with
clock times is easier.

Listing 4.5 The Time class of objects and its driver (in two different files)

public class Tine extends Object
{

private int itsHour;

private int itsMn;

/[** Create an object for the given hour and mnute. If mn
* is negative, adjust the values to make 0 <= min < 60. */

public Time (int hour, int mn) /1 constructor
{ super();
i tsHour = hour;
for (itsMn =mn; itsMn <0; itsMn =itsMn + 60)
i tsHour - -;

|
/** Return the tinme expressed in mlitary tine. */

public String toString()
{ if (itsHour < 10)
return ("0" + itsHour) + itsM n;
el se
return ("" + itsHour) + itsMn;

} oI

public Time add (Tinme that)
{} [// left as an exercise

}
[| #HBHHHBHHHBHHH B H B H B H B H B H R H R H R H R H R H R H R

i mport javax.sw ng. JOpti onPane;
public class Ti neTester
public static void main (String[] args)

{ Time tl = new Tine (13, 25);
Time t2 = new Tine (8, -150);

JOpt i onPane. showvessageDi al og (null, "1 " + tl.toString());
JOpt i onPane. showvessageDi al og (null, "2 " + t2.toString());
Time t3 = tl.add (t2);
JOpt i onPane. showvessageDi al og (null, "3 " + t3.toString());
tl = t2.add (t3);
JOpt i onPane. showvessageDi al og (null, "1 " + tl.toString());
Systemexit (0);

|

4-15 Java Au Naturel by William C. Jones 4-15

The Time class has two int instance variables for the hours and the minutes, and the
constructor is the natural one that initializes the two instance variables with the values of
the two parameters. It makes a reasonable adjustment for a negative number of minutes.
The t oSt ri ng method returns the time expressed as a String value indicating the usual
military time. For instance, 14 hours and 15 minutes is expressed as "1415" but 7 hours
and 30 minutes is expressed as "0730".

Time's t oSt ri ng method concatenates the "0" with the digits of i t sHour to get a String
value, then concatenates the result with the digits of i t sSM n. The order of the
operations is important; "0" + (itsHour + itsM n) would have a quite different
result, e.g., "042" if i t sHour were 12 and i t sM n were 30.

Driver programs

Before you use a class of objects in a program having several classes, you should test
out the methods in that class separately. A driver program is an application program
whose only purpose is to test the methods of a class thoroughly. The TimeTester class
in the lower part of Listing 4.5 does this fairly well, by creating three Time objects and
using both the t oSt r i ng method and the add method several times.

This driver program would be an even better test if it could accept input from the user that
gives the hour and minute values for one or both of t 1 and t 2. However, you do not
as yet have any way to get a number from the user; showl nput Di al og only gets a
string of characters, which is not at all the same thing. This situation will be rectified in
the next section.

+ = <) and also directly after a comma or semicolon; it makes your program
much easier to read. The space between a method name and its parentheses

E’? Programming Style Always put a space on each side of an operator (including
is optional -- some people prefer it and some do not.

Exercise 4.11 Ifxis23 andyis5,whatare "x" + (x + y) and ("x" + x) + y?
Exercise 4.12 If a Time object t4 has 13 fori t sHour and 5foritsM n, what is
t4.toString()? Whatshould it be in military time?

Exercise 4.13 How would you revise Time's t oSt r i ng method to avoid the problem
indicated by the preceding exercise?

Exercise 4.14 Write a Person method public int getAge (int currentYear):
The executor tells the current age of the Person, given the current year. But it returns
zero if the current year is before the Person's birth year.

Exercise 4.15 Write the Time method public Tinme add (Tinme that): The
executor returns a new Time object that is the sum of the two, e.g., 0740 add 1430 is
2210. If the sum is more than 2359, drop the extra 24 hours, e.g., 1300 add 1400 is 300.
Exercise 4.16* Write a Time method public int tinmel nM nutes(): The executor
tells the total number of minutes that have passed since midnight.

Exercise 4.17* Write a Time method publ i ¢ Ti me subtract (Tine that): The
executor returns a new Time object that is itself minus the parameter, e.g., 0720 subtract
1430 is 1650. If the difference is negative, add an extra 24 hours.

Exercise 4.18* If you wanted Time objects to have a third attribute, the name of the day
of the week, then (a) What instance variable declaration would you add? (b) What
change would you make in the constructor? (c) What instance method would you have
that tells the caller the object's day of the week? Write and compile the revised class.
Exercise 4.19* Revise the Time constructor to properly adjust for i t sM n larger than
59, adding to i t sHour as needed. Then repeatedly add or subtract 24 from i t sHour
until the value is in the range 0 to 23 (discard the excess; we do not care what day it is).
Exercise 4.20** Revise the Time constructor as stated in the preceding exercise, but do
not have any looping statements anywhere in the constructor. Hint: Use the % operator.

4-16 Java Au Naturel by William C. Jones 4-16

4.6 Making Random Choices

We next develop a more interesting game than a BasicGame. The game object starts by
picking a secret number at random in the range from 1 to 100, inclusive. It then asks the
user to guess the number. If the user gets it right, of course the game is over. Otherwise
the game object tells the user whether the guess was higher than the secret number or
lower, and the game continues with more guessing.

Random integers

One thing this game needs is the ability to choose an integer value at random from a
certain range of values. Fortunately, the Sun standard library has a Random class in the
java. util package that provides objects that can do this. The phrase new
Randon{) creates a random number generator that you may assign to a variable of
Random type, called perhaps r andy.

A Random object has an instance method named next | nt with a positive int value as
the parameter. It returns an int value chosen at random in the range from 0 up to but not
including that parameter value:

Random randy = new Random() creates a random-number generator.
randy. next I nt (6) returnsoneof 0,1, 2, 3, 4, or 5, with equal likelihood.
randy. next I nt (2) returns either O or 1, with equal likelihood.

randy. next I nt (100) returns one of 0, 1, 2, ..., 99, with equal likelihood.

In general, next | nt (n) returns one of the first n non-negative int values, chosen with
equal likelihood. These numbers are not truly random, since computers hardly ever do
anything at random. But the sequence of numbers you get by repeated calls of the
method is close enough for most purposes.

Since the number-guessing game wants one of the 100 int values in the range 1 to 100
inclusive, you need to call randy. next I nt (100) to get one of 100 different int values,
then add 1 to the result to get one of the 100 different int values beginning with 1. If
instead you needed a random int value in the range 20 to 30 inclusive, a total of 11
possibilities, you would call randy. next I nt (11) and then add 20 to the result.

The general principle is that the expression m n + randy. next | nt (nun) gives one
of numconsecutive int values with the smallest being m n. If, however, you want a
multiple of ten chosen at random from 30, 40, 50, ..., 150, you could use the expression
30 + 10 * randy. nextlnt(13), which clearly gives one of the 13 possible multiples
of 10. And if you want to get the result of rolling two dice, you could use the following:

int diel =1 + randy.nextInt (6);
int die2 =1 + randy.nextInt (6);
JOpt i onPane. showMessageDi al og (nul |,
("The 2 dice show " + diel) + die2);

The GuessNumber game

It will be quite convenient to have the GuessNumber class be a subclass of BasicGame.
That means we can use whatever methods of the BasicGame class we want. For
instance, the pl ayManyGanes and pl ayOneGane methods can be used unchanged for
a GuessNumber game. That is, we have the advantage of reusable software by making
GuessNumber a subclass of BasicGame.

4-17 Java Au Naturel by William C. Jones 4-17

A GuessNumber object should apparently have two instance variables, perhaps named
i tsSecret Nunmber and it sUser sNunber (parallel to the instance variables in Listing
4.3). The askUser sFi r st Choi ce method should begin by having a random number
generator assign to i t sSecr et Nunber a value from 1 to 100 inclusive. That means
you should have the random number generator as an instance variable as well. This
initialization of the secret number cannot be done in the constructor, since each time the
game is played, the secret number must be re-initialized.

This logic is shown in the top part of Listing 4.6 (see next page). It has the import
directive for JOptionPane but not for Random. You do not need to have an import
directive if you explicitly name the package that Random is in every time you mention the
word Random. This is the "fully qualified name" of the Random class. The alternative to
what is shown is to have i nport java. util.Random as a second line before the
class heading and then simply use an unadorned Random in two places.

The askUser sFi r st Choi ce method does the same as for any later choice, except that
it first initializes i t sSecr et Nunber . So it can call the askUser sNext Choi ce method
to get the input. There is no reason to write the same coding twice.

The shoul dCont i nue method returns t r ue whenever i t sSecr et Nunber is not equal
toitsUser sNunber . The test of equality of numbers is always made with the operator
== or ! =. The equal s method can only be used with objects, and int values are not
objects.

The rest of Listing 4.6 should be clear except for askUser sNext Choi ce, which is
discussed next. Figure 4.3 gives the UML class diagram.

Guesshumber {> Basicizame

————— 3 JoptionPane
new playyhanyGamess
arklbzersFirstChoice!) showlnputDialog (String) © String plaryCneGamel)
asklizersiextChoice() showhiessageDialog (Window, String)| [ShowFinalStatus()
shouldContinuer)
showUpdatedStatus() [-7 T 7T TTTTT T oS- -Toooo- - #{Randam
showFinalStatusy [0 o —m/ 4 ——— HInteger

“““ 3 String nesr

parselnt (String) | int nextint (int) ;int

Figure 4.3 UML class diagram for GuessNumber

Caution A test for equality of Strings, as in the shoul dCont i nue method
of the earlier Listing 4.3, is always made with the equal s method. Do not
use == or ! = to compare strings except in a comparison with nul | .

The use of the parselnt method for askUsersNextChoice

The showl nput Di al og method returns a String value (which can be nul | if the user
clicked the Cancel button). A String value is not an int value, so you cannot assign it to
the int variable i t sUser sNunber . You have to convert the string of characters, which is
a numeral, to a number. For instance, the number 88 can be added to or subtracted from
other numbers; the numeral "88" is just keystrokes or marks on the screen. Some people
like to remember the difference this way: Half of the number 88 is 44, but half of the
numeral "88" is "8" (or even "00" if you cut it in half horizontally rather than vertically). Or
perhaps this way: Pro football players have big numerals on their jerseys and big
numbers in their bank accounts.

4-18 Java Au Naturel by William C. Jones

Listing 4.6 The GuessNumber class

4-18

i mport javax.sw ng. JOpti onPane;

public class GQuessNunber extends Basi cGane

{
private java.util.Random randy;
private int itsSecretNunber;
private int itsUsersNunber;
publ i c GuessNunber ()
{ super();
randy = new java.util.Random();
|
public void askUsersFirst Choi ce()
{ itsSecretNunber = 1 + randy.nextlnt (2100);
askUser sNext Choi ce() ;
|
public void askUser sNext Choi ce()
{ String s = JOpti onPane. show nput Di al og
("Guess nmy nunber from1l to 100:");
if (s!=null & ! s.equals (""))
i tsUsersNunber = Integer.parselnt (s);
el se
itsUsersNunber = -1; // just to have a val ue there
|
publ i ¢ bool ean shoul dConti nue()
{ return itsUsersNunber != itsSecretNunber;
|
public void showUpdat edSt at us()
{ if (itsUsersNunmber > itsSecretNunber)
JOpt i onPane. showMessageDi al og (null, "Too high");
el se
JOpt i onPane. showMessageDi al og (null, "Too |ow');
|
/1 inherited from Basi cGane:
/1 pl ayManyGanes
/1 pl ayOneGane
/1 showfi nal St at us
}

Fortunately, the Sun standard library has a class named Integer that can help convert a
numeral to a number. Integer (in the j ava. | ang package) contains a class method:

I nt eger. parselnt (someString)

This method returns the int value you get when you interpret the keystrokes as digits of a
number. If the user enters letters instead of digits or otherwise provides a badly-formed

numeral, the program can crash. This is a violation of the robustness principle: All

application programs should be written so that they cannot crash. But you may ignore

this possibility until you see the advanced techniques in Chapter Six to avoid such

crashes by checking that the String is a well-formed numeral. Until then, all user input

that is supposed to be numeric will be assumed to be so, unless itis nul | or

4-19 Java Au Naturel by William C. Jones 4-19

Parse means to analyze a string of characters into its component parts. For instance,
when you make sense of a Roman numeral, you are not "translating" it to an ordinary
number, you are "parsing" it.

So the askUser sNext Choi ce method in Listing 4.6 gets the String value input using
JOptionPane's class method and then has it parsed to an int value using Integer's class
method. However, a nul | value or empty String returned by showl nput Di al og is
taken as -1. Note that the order of the operands of && is crucial; you cannot ask the

nul | value if it equals the empty String. With the order given, if s is nul | , short-circuit
evaluation will avoid testing the call of equal s.

You have now seen all three varieties of object design:

1. Use existing objects and their methods (the Vic class in Listing 3.3).
2. Use existing objects but add new methods (the GuessNumber class in Listing 4.6).
3. Invent new objects to do the job (the Time class in Listing 4.5).

L anguage elements
You may use == or != between two object values (but rarely do so unlessoneis null).

Exercise 4.21 Write an expression that gives a random int value from -5 to 5, inclusive.
Also write an expression that gives a random even number from 30 to 50, inclusive.
Exercise 4.22 Revise the GuessNumber game to have the secret number be in the
range from 200 to 300, inclusive.

Exercise 4.23 Revise the GuessNumber game to tell the user "close enough; you win"
when the guess is no more than 2 away from the right answer but not exactly right.
Exercise 4.24 What is the most number of guesses it would take for a really smart
person to win this GuessNumber game? Explain your answer.

Exercise 4.25 Write an application program that asks the user for a sequence of int
values and, when showi nput Di al og returns nul | , announces the smallest of them.
Exercise 4.26* Write an application program that asks the user for two int values and
then announces whether one evenly divides the other (using %).

Exercise 4.27* Revise the GuessNumber game to say "you're hot" if within 2 of the right
answer, "you're warm" if within 6 of the right answer, and "too high" or "too low"
otherwise.

Exercise 4.28* Revise the GuessNumber game to have the program lie one-third of the
time that the guess is too high; it says it is too low. But it never lies about the guess
being too low, nor does it lie twice in a row.

Exercise 4.29* Find the best strategy for getting the right answer in the fewest guesses
for the revision of GuessNumber described in the preceding exercise.

4.7 Overloading, Overriding, And Polymorphism

The signature of a method is its name followed by the types of its parameters in
parentheses (leave out the return type and the names of its parameters). For instance,
the signatures of the three JOptionPane methods described in Section 4.2 are as follows
(a Component is a graphical object, and a Window is a Component):

showMessageDi al og (Conmponent, String)
show nput Di al og (Stri ng)
showConfirnDi al og (Conponent, String)

and the signatures of the methods of the Time class in Listing 4.5 are as follows:
Time (int, int)

toString()
Ti me add (Tine)

4-20 Java Au Naturel by William C. Jones 4-20

Overloading of method names

Java lets you have several methods in the same class with the same name if they have
different signatures. This is overloading of method names. This is quite common for
constructors; you may have as many as you want as long as the compiler can distinguish
them based on the parameter structure. For instance, you might want a second Time
constructor that has a single int value as input, being the total number of minutes to be
converted to hours plus minutes. So you could add to Listing 4.5 a constructor with the
following heading:

public Time (int total M nutes)

You might also want the Time class to have a second t oSt ri ng method, one with a
String parameter telling which time zone to use, so it could have this heading:

public String toString (String tinmeZone)

In the email metaphor of Section 1.6, a Time object that gets the message with subject
line t oSt ri ng first checks the body of the message. If it contains a String, that is an
indication of the time zone. If the body of the message is blank, it returns military time.

Overriding of method definitions

A class may have the same method heading as a method in its superclass. For instance,
both the BasicGame class and the GuessNumber class have a method with the heading
publ i c bool ean shoul dConti nue() . The Java language rule in such a case is, if x
is declared as a GuessNumber object somewhere, then x. shoul dCont i nue() calls
the method in GuessNumber, not the one inherited from BasicGame. The new definition
of shoul dConti nue() overrides the original definition of shoul dConti nue() for
GuessNumber objects, since it has the same signature (hame and parameter pattern).

To illustrate the overriding of method definitions, we have just one more listing involving a
subclass of Vic (the last in this book, because you are probably getting tired of Vics by
now). This subclass is named BigVic. Each BigVic object keeps its own record of the
number of filled slots and the number of empty slots it has. These are two int variables
nameditsNuntill ed and it sNunEnpty. They are instance variables, because each
instance (object) of the BigVic class has its own.

If a program says sue = new Bi gVi c(), then sue' s object has the two instance
variables it sNunfi | | ed and i t sNunEnpt y attached to it, in addition to whatever all
Vic objects have. A call of sue. get Nunti | | ed() has sue look up the value of
sue. i tsNunti | | ed and report it back. If the program also says sam = new

Bi gVi c(), then sanis object has its own two variables which are completely distinct
from sue'’s.

When samis a BigVic, a main method that calls sam put CD{) cannot simply execute
the original put CD() method in the Vic class, because that would make sanis counts
wrong. So the BigVic class must have its own put CD() method that makes the two
counts right. The method call sam put CD() will execute the put CD() in the BigVic
class, not the original one inherited from the Vic class. In other words, the new definition
of put CD() overrides the original definition of put CD() for BigVic objects, since it has
the same signature.

Caution You cannot have two methods defined in the same class with the
same signature. If they have the same name, they must have a different
parameter structure. It is not enough to be different in the part of the
method heading that comes before the method name.

4-21 Java Au Naturel by William C. Jones 4-21

Calling a method that has been overridden

Part of the job of the new put CD method in BigVic is to execute the original put CD
method in the Vic class. But if you write put CD() as one of the statements in the
definition of the new put CD method, the executor would execute the new BigVic method,
not the old Vic method, which would cause no end of difficulty.

Listing 4.7 (see next page) contains the BigVic class other than the constructor (left as an
exercise). The method call super. put CD() tells the runtime system to execute the
put CD method from the superclass, i.e., from the class BigVic extends. That will be the
put CD method defined in the Vic class (since the intermediate Looper superclass does
not override that definition of put CD()). Similarly, super.takeCD() inside BigVic's

t akeCD method will execute the t akeCD method from the original Vic class. In either
case, the BigVic object also corrects the counts for the number of filled slots and empty
slots.

As you know, a method call inside a BigVic instance method has t hi s as its executor if
none is specified. So super.takeCD() actually means this. super.takeCD().
Similarly, if some other class declares samas a BigVic object, then sam t akeCD()

calls the BigVic method and sam super .t akeCD() calls the original Vic method.

Polymorphism

If you execute sue = new Bi gVi c() andthenexecute sue.fill Sl ots(), that
contains a call of put CD() (fill Sl ot s is defined for Loopers in the earlier Listing 3.4,
and every BigVic object is a Looper object as well). That call changes two counters,
sue. i tsNunfil | ed and sue. i t sSNunEnpt y, in the BigVic object. But calls of

fill Sl ots() with an ordinary Looper object do not change any counters. The
command put CD() within the definition of fi | | SI ot s has different effects depending
on the class of the object that is executing the command. So we say that the put CIX)
statement in Listing 3.4 is polymorphic (meaning it has more than one form).

Similarly, when a method executes gane = new GuessNunber () and then executes
gane. pl ayOneGane(), that causes a call of shoul dConti nue() . This is because
pl ayOneGane is defined for BasicGames in the earlier Listing 4.3, and every
GuessNumber object is a BasicGame as well. That call tests i t sUser sNunber . But
calls of shoul dConti nue() with an ordinary BasicGame object testi t sUser s\Wor d
instead. The command shoul dConti nue() within the definition of pl ayOneGane
has different effects depending on the class of the object that is executing the command.
So we say that the shoul dCont i nue() condition in Listing 4.3 is polymorphic.
Polymorphism is the execution of polymorphic method calls.

Stickies

Think of polymorphism this way: Each object has a sticky-note on its side saying what
class it belongs to. When the runtime system executes t hi s. shoul dCont i nue() for
a GuessNumber object, it checks out the sticky-note on the side, sees thatt hi s is a
GuessNumber object, and so executes the shoul dCont i nue method defined in the
GuessNumber class. If it found that the sticky-note said it was a BasicGame object, it
would execute the shoul dCont i nue method defined in the BasicGame class.

How does the sticky get there, you ask? The super call in the constructor puts the sticky
on the object. The super call has to be the first statement in the constructor so that the
rest of its statements can use t hi s (implicitly or explicitly). (Note: In case you had not
guessed by now, this is a metaphor. There really is no sticky in RAM, just an extra
instance variable defined in the Object class and initialized by the super call.)

4-22 Java Au Naturel by William C. Jones 4-22

Listing 4.7 Four methods in the BigVic class

public class BigVic extends Looper

{

private int itsNunfill ed; /[l count this's filled slots
private int itsNunmEnpty; // count this's non-filled slots

public BigVic() /1 constructor
{ /I left as an exercise
|

/[** Tell how many of the executor's slots are filled. */

public int getNunFilled()
{ return itsNunFill ed;
|

/[** Tell how many of the executor's slots are enpty. */

public int getNunEnpty()
{ return itsNunEnpty;
|

/** Do the original putCD(), but also update the counters. */

public void putCD()
{ if (! seesCD() && stackHasCD())
{ itsNunFilled++;
i t sNunEnpt y--;
super . put CIX) ;

|
/** Do the original takeCD(), but also update the counters. */

public void takeCD()
{ if (seesCX))
{ itsNunFilled--;
i t SNunEnpt y++;
super . takeCY) ;

y o1

}

The equals method for Strings

The Object class defines a method named equal s: x. equal s(y) returns an answer
of true or f al se, depending on whether x and y refer to exactly the same object.
The String class overrides that definition with its own equal s method: x. equal s(y)
for two String references returns t r ue if the String objects contain exactly the same
characters in the same order, even if they are two different String objects. In effect, it
tests whether two boxes have the same contents, even if they are different boxes.

Caution It is almost always bad, and often uncompilable, to override a
method in a superclass that does not have exactly the same method
heading in all respects. For instance, Object's method has the heading
publ i c bool ean equal s (Obj ect 0),soanyequal s method you
define should also begin with publ i ¢ bool ean.

4-23 Java Au Naturel by William C. Jones 4-23

L anguage elements
Two methods may have the same name if they are in different classes or have different signatures.
The following kinds of method call will call MethodName in the superclass of someObject:
someObject . super . MethodName ()
someObject . super . MethodName (Expressi onsSeparatedByCommas)

Exercise 4.30 Create a Liar subclass of the Person class in Listing 4.4: When you ask a
Liar for its first name, half the time it says it is Darryl even if that is a lie.

Exercise 4.31 What changes would you make in Listing 4.7 to use an instance variable
named i t sNunfl ot s (the total number of slots) but not the instance variable

i t sNunEnpt y, and still do the same things with the same method calls?

Exercise 4.32* Write out the signature of each method called in Listings 1.10 and 1.11.
Exercise 4.33* Write out the full Time constructor with the heading public Ti me

(int total M nutes). Be sure to allow for negative inputs.

Exercise 4.34** Write out the BigVic constructor that Listing 4.7 needs.

4.8 The Rules Of Precedence For Operators

Sometimes you have to put parentheses around parts of an expression to have it mean
what you want it to mean. For instance, as you learned in algebra class, x + y * z
needs parentheses if you mean (x + y) * z butnotifyoumeanx + (y * z).
This is because multiplication takes precedence over addition.

This section gives all the rules of precedence you need, if you choose to minimize the
number of parentheses you use. This thorough discussion requires talking about a few
things you will not see until the next two chapters. So just accept for now that it can be
useful to put (i nt) or (Tine) infrontof an expression. You can use the name of
any type of value in those parentheses, so the generic form is (soneType).

Accept also that you can put not only parentheses () but also brackets [] around
an expression to get something useful. Both of these are "grouping symbols." For this
section only, we call a matched pair of grouping symbols plus their contents "groupers".

The algebra rules of precedence in Java are as follows:

1. For arithmetic expressions, multiply and divide operations are done first, then add and
subtract. The % symbol counts as a divide operation. So 3+5 * 8 has the value 43,
not 64.

2. The compiler works left-to-right in a sequence of multiply and divide operations. So
10 / 2*5 is 25, not 1.

3. The compiler also works left-to-right in a sequence of add and subtract operations. So
10 - 245 is 13, not 3. When one of the two added values is a String, the result is a
string of characters, not a numeric value. So when you take into account the left-to-right
evaluation, you see that the valueof 3 + 4 + "x" + 3 + 4 is "7x34".

4. You need to put parentheses around an expression formed with the addition,
subtraction, multiplication, and division signs + - * / % if you negate it (asin -(x + y))
or you apply (soneType) to it or you want to override the usual algebra rules of
precedence.

4-24 Java Au Naturel by William C. Jones 4-24

The general rules of precedence in Java are as follows:

1. You never need to put parentheses around an expression that only involves words
connected by dots and/or followed by groupers, ++ or --.

2. You never need to put parentheses around ! What ever or - Wat ever if the
latter is the negation operator (asin y > - X; we are not talking about subtraction here).
You need to put parentheses just around the Whatever part if that part consists of an
operator applied to two or more operands and the operator is not a dot or grouper.

3. You only need to put parentheses around (sonmeType) What ever when that
expression is directly followed by a dot or grouper. You need to put parentheses just
around the Whatever part if that part consists of an operator applied to two or more
operands and the operator is not a dot or grouper.

4. You need to put parentheses around an expression formed with | | , such as St uf f
|| MoreStuff,ifyouuse && to combine that or-expression with another value.

5. You should always put parentheses around an expression formed with ?: except
when it is to be assigned or returned (you will see ?: expressions in Chapter Six).

6. You should also use parentheses liberally in some quite rare situations which are not
used in this book: if you use shift or logical or bitwise operators, if you test for equality
between two boolean expressions, or if you use the value of an assignment operation in
a statement.

Caution You would not put a space in the middle of the word String or
boolean and expect it to compile, would you? In Java, ++ and <= and
== are all words, and the compiler will not like it if you put a space in the
middle of one of those words.

1 2 3 4 5 6 7 8 9 10 11
() ++ [* + < == && [] ?: =

[1 |- |Ctype) |1 |- |<= = +=

. - % > -=

+ >= * =

i nst anceof /=

%

Figure 4.4 Precedence of operators: The highest precedence is towards the left.
The + and - at level 3 are not add and subtract; they apply to one operand.

Exercise 4.35 Neither of the following expressions will compile correctly. Add correcting
parentheses to fix eachone: (a) ! v + 2 < 3 & z.isTall () (b) (Boss)

per son. get Job() .

Exercise 4.36 There are eight possible assignments of t r ue and f al se to the boolean
variables b, c,and d. Which assignments give (b || c) && d a different value
from b || (c && d)?

Exercise 4.37* Same question as the preceding exercise, but for the two expressions
I'b & (c || !'d) and !(b || !'c && d).

4-25 Java Au Naturel by William C. Jones 4-25

4.9 Analysis And Design Example: The Game Of Nim

Nim is a somewhat challenging game. The game starts with a pile of stones or other
markers, perhaps 20 to 40 in all. The two players take turns removing 1 to 5 stones from
the pile (although the upper limit might be set at some other small number, such as 3 or
4). The player who takes the last stone wins the game.

For instance, if the pile starts with 23 stones, the first player might take 4, leaving 19, and
then the second player could take 3, leaving 16. If the first player then takes 2, leaving
14, the second player could take 4, leaving 10. Then the first player might take 1, leaving
9, and the second player could take 3, leaving 6. Then whatever the first player takes,
the second player will be able to take the rest and thereby win the game. The
accompanying design block is a reasonable plan for this program.

STRUCTURED NATURAL LANGUAGE DESIGN for Nim

1. Choose at random an initial number of stones for the pile, 20 to 40.

2. Choose at random the maximum number to take each turn, 3 to 5.

3. Ask the user how many he/she wants to take for the first turn.

4. Repeat the following until the pile has no more than the maximum one may take...
4a. Choose the number the computer takes and tell the user.
4b. Ask the user how many he/she wants to take for the next turn.

5. Tell the user who won and why.

Object design for Nim

The BasicGame logic applies here, so Nim should be a subclass of BasicGame. That is,
BasicGame objects can be "retrained" to perform acceptably the tasks that this situation

requires. The pl ayManyGanes and pl ayOneGane logic can stand without change, so

we have five methods to develop.

A single game seems to have just two attributes, the number of stones currently in the
pile and the maximum number of stones one may take on each turn. Store this
information in two instance variables named i t sNunieft anditsMaxToTake. The
askUser sFi r st Choi ce method should initialize these two values, the former as a
random number in the range from 20 to 40 and the latter as a random number in the
range from 3 to 5. This implies that a Nim object also needs a random number
generator. The Nim object should keep the generator around to use in deciding its next
move, so the generator should be an instance variable rather than a local variable of one
method. Once the askUser sFi r st Choi ce method has chosen the initial values, it
asks for the user's next choice. These declarations are in the top part of Listing 4.8.

The askUsersFirstChoice method

Implementing askUser sFi r st Choi ce is a bit more complicated than the other
methods. The general idea should be to ask for input, repeating as needed until the user
supplies a permissible choice, then subtract that number from i t sNunLeft. When you
rework this basic logic in detail, you could come up with the logic in the accompanying
design block, for which the coding is in the middle part of Listing 4.8.

STRUCTURED NATURAL LANGUAGE DESIGN for askUsersNextChoice
1. Do the following until the choi ce is in the range from 1 to naxToTake...
la. Get input from the user using showlnputDialog (so it is a String or else null).
1b. If the input contains one or more characters then...
1ba. Convert the string of characters received into an integer choi ce.
2. Subtract choi ce from it sNunlLeft to get the new value of i t sNunieft.

4-26 Java Au Naturel by William C. Jones 4-26

Listing 4.8 The Nim class of objects

i mport javax.sw ng. JOpti onPane;

public class N m extends Basi cGane

{
private java.util.Randomrandy = new java.util.Randon();
private int itsNunmLeft;
private int itsMaxToTake;
public void askUsersFirst Choi ce()
{ itsNumieft = 20 + randy. nextlnt (21);
i tsMaxToTake = 3 + randy. nextlnt (3);
askUser sNext Choi ce() ;
|
public void askUser sNext Choi ce()
{ int choice = 0;
do
{ String s = JOpti onPane. show nput Di al og
(itsNumLeft + " left. Take 1 to " + itsMaxToTake);
if (s!=null & ! s.equals (""))
choi ce = Integer. parselnt (s);
}while (choice <1 || choice > itsMaxToTake);
itsNunLeft = itsNunLeft - choi ce;
|
publ i ¢ bool ean shoul dConti nue()
{ return itsNunLeft > itsMaxToTake;
|
public void showFi nal St at us()
{ if (itsNunLeft == 0)
super. showri nal St at us() ;
el se
JOpt i onPane. showMessageDi al og (null, "I take "
+ itsNunieft + " and so | win.");
|
public void showUpdat edSt at us()
{ int nove = itsNunlieft % (itsMaxToTake + 1);
if (move == 0)
move = 1 + randy. nextlnt (itsMaxToTake);
itsNunmieft = itsNunLeft - nove;
JOpt i onPane. showMessageDi al og (null, "I take " + nove
+ ", leaving " + itsNunieft);
|
}

The shouldContinue and showFinalStatus methods

The shoul dCont i nue method is the easiest to develop next: If there are no stones left,
the game is over and the human player wins. Otherwise, if the computer opponent can
take all remaining stones and win, it should do so, which also makes the game over.
Otherwise the game should continue. You may conclude, therefore, that the game
should continue if and only if i t sNunieft is greaterthanit sMaxToTake.

4-27 Java Au Naturel by William C. Jones 4-27

The logic for the showFi nal St at us method is implicit in the preceding analysis. Itis
basically an if-statement: If there are no stones left, the program should announce that
the user wins. This can be done by using super to call on the showFi nal St at us
method in the BasicGame superclass. But if there are a few stones left, it will not be
more than i t sMaxToTake, so the computer opponent announces that it takes the
remaining stones and wins. See the middle part of Listing 4.8 for the coding of these two
methods.

The showUpdatedStatus method

The hard part of the showUpdat edSt at us method is to decide what move the computer
player is to make. This is a problem of strategy rather than a programming problem.
Extensive thought leads to the conclusion that the computer opponent can always win if it
leaves a multiple of six stones each time (assuming the maximum allowed is five; the
general formulais i t sMaxToTake+1). So the computer's move will always be to
calculate the remainder left after i t sSNunLef t is divided by i t sMaxToTake+1 and take
that many stones.

However, the human player might have left a multiple of six stones (or whatever

i tsMaxToTake+1 is). Inthat case, the computer opponent must choose some number
of stones and hope that, on the next move, the human player does not leave a multiple of
six (or whatever). A random choice from 1 to i t sMaxToTake is appropriate here. The
program then subtracts that many stones from i t sNunief t and announces the result.

Note how easily the preceding two paragraphs lead to the correct coding for

showUpdat edSt at us, as shown in the lower part of Listing 4.8. The most important
principle for developing the correct logic for a method is to write it out in English first (or
whatever natural language you are most comfortable with), normally with a structured
organization. Read it over, make sure there are no errors in it, then write it down in Java.

Debugging The primary information you need for debugging a program is the
intermediate values of key variables. Each variable in the Nim class is printed right after
it is assigned a value with one exception. You can get that information by temporarily
inserting the following as the last statement of askUser sNext Choi ce:

Systemout.println (itsNunieft + "=num choice=" + choice);
Note on terminology If X extends Y, we often say that X "is derived" from Y, that X is a

"child" of Y, and that Y is a "parent" of X. Since BasicGame is the parent class of Nim
and GuessNumber, that makes those two "sibling" classes.

Exercise 4.38 Revise Listing 4.8 so that an illegal choice by the user is changed to be a
guess of 1. Be sure to inform the user of this adjustment each time it happens.

Exercise 4.39 Revise Listing 4.8 so that the user gets to decide who goes first, once
informed of i t sSNunLeft and i t sMaxToTake.

Exercise 4.40* What happens if i t sMaxToTake is 5, the human player leaves 6, the
computer takes 4, and then the human player tries to take 3? Fix the inconsistency.
Exercise 4.41* Revise Listing 4.8 so that the rule is that a player can take up to half of
the remaining stones, but always at least 1, and the size of the initial pile of stones is
from 50 to 100. Have the computer take about a third of the remaining stones each time.
Exercise 4.42** For the game rules of the preceding exercise, give the computer a
strategy that guarantees it wins if the human player does not make the one right choice
every time.

Exercise 4.43** Revise Listing 4.8 so that the showFi nal St at us method announces
how many games so far the human player has won and how many the program has won.

4-28 Java Au Naturel by William C. Jones 4-28

4.10 Analysis And Design Example: The Game Of Mastermind

Suppose you decide to write a program to play the game of Mastermind. The program is
to choose a three-digit whole number (000 to 999) and the human player is to guess the
number. Each time the user announces a guess, the program is to tell whether all three
digits are right. If the user's choice is not completely right, the program is to tell how
many digits of the guess were in the right position. It is also to tell how many other digits
of the guess were in the wrong position in the number. Then it has the user guess again.

Analysis and logic design

To make sure you have the concept right, you try it out with some sample data, e.g., if the
program's chosen number is 123 and you guess 325, the program is to say you have one
digit in the right place (the 2) and one digit in the wrong place (the 3). You realize that
you are not sure how to count the number wrong when duplicate digits are involved, e.g.,
how many digits are wrong in the guess 225 if the program's chosen number is 123? So
you check with your client and find out that the first 2 is considered to be in the wrong
position. That is, the game should announce 1 in the right position and 1 in the wrong
position. After several more trials, you are ready to work out the logic design. A
reasonable plan is shown in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for Mastermind

1. Choose a secret three-digit whole number.

2. Ask the user for his/her first guess.

3. Repeat the following until the current guess is completely right...
3a. Tell the user how many digits are right and how many are wrong.
3b. Ask the user for his/her next guess.

4. Tell the user he/she has finally gotten it right.

Object design and initialization

This logic has the same structure as the BasicGame logic, so you can make Mastermind
a subclass of BasicGame. The inherited pl ayManyGanes, pl ayOneGane, and
showFi nal St at us methods can be used unchanged.

The construction gamre = new Mast er mi nd() should create the game-playing object
and askUser sFi r st Choi ce should choose a secret three-digit number at random.
Since you will have to compare individual digits of the guess, it is probably more
convenient to pick three separate one-digit numbers at random. So you could have the
following initializations of instance variables (the digits are in the range 0 to 9 inclusive):

randy = new Random();

itsFirst = randy.nextlnt (10);
itsSec = randy. nextInt (10);
itsThird = randy. nextlnt (10);

The user's input will be a three-digit integer. It will be easiest to store the three digits in
three separate variables, so you can compare them with the three digits of the secret
number. Since one instance method gets these three values and another instance
method looks at them to see if they match, you must store the three digits of the user's
guess in instance variables. These three variables could be named user sFi r st ,
user sSec, and user sThird. The upper part of Listing 4.9 declares the instance
variables, the constructor, and the rather obvious askUser sFi r st Choi ce method
(which has most of its work done by the askUser sNext Choi ce method).

4-29 Java Au Naturel by William C. Jones 4-29

Listing 4.9 The Mastermind class of objects, one method postponed

i mport javax.sw ng. JOpti onPane;
i mport java.util.Random

public class Masterm nd extends Basi cGane

{
privat e Random r andy;
private int itsFirst; /] 100's digit of secret nunber
private int itsSec; [/ 10"s digit of secret nunber
private int itsThird; /1 1's digit of secret nunber
private int usersFirst; // 100's digit of user's guess
private int usersSec; /[l 10's digit of user's guess
private int usersThird; // 1's digit of user's guess
public Mastermn nd()
{ super();
randy = new Random();
|
public void askUsersFirst Choi ce()
{ itsFirst = randy.nextlnt (10);
itsSec = randy. nextInt (10);
itsThird = randy. nextlnt (10);
askUser sNext Choi ce() ;
|
public void askUser sNext Choi ce()
{ String s;
do
{ s = JOptionPane. show nput Di al og
("Enter a three-digit integer:");
}while (s == null || s.equals (""));
i nt guess = Integer. parselnt (s);
usersThird = guess % 10;
usersFirst = guess / 100;
usersSec = (guess / 10) % 10;
|
publ i ¢ bool ean shoul dConti nue()
{ return usersFirst !=itsFirst || usersSec != itsSec
|| usersThird != itsThird;
|
}

The askUsersNextChoice method

First you have to get a string of characters as input and convert it to an integer value
stored in guess (except if the input string has no characters, you get another input).
Now you need to separate out the digits. Taking the remainder from dividing guess by
10 clearly gives the last digit of guess. Taking the guotient from dividing guess by 100
clearly gives the first digit of guess (assuming the user has not made a mistake and
entered more than 999). But how do you get the middle digit?

If you take the quotient from dividing guess by 10, you suppress the last digit, so the last
digit of that quotient must be the next-to-last digit of the original guess. In other words,
the computation (guess / 10) % 10 gives the middle digit of guess. The coding for
this askUser sNext Choi ce method is in the middle part of Listing 4.9.

4-30 Java Au Naturel by William C. Jones 4-30

The shouldContinue method

If each one of the user's digits matches the corresponding secret digit, the game is over.
So if any one of the three user's digits is not the same as the corresponding secret digit,
the game should continue. That gives the obvious coding in the bottom of Listing 4.9.

The showUpdatedStatus method

The showUpdat edSt at us method has to calculate the number of user's digits in the
right position and the number of user's digits that are in the wrong position. You can
simply go through the user's digits one at a time and for each one, count it as right if it
matches the corresponding secret digit, otherwise see if it matches either of the other two
secret digits (in which case it counts as being in the wrong position).

The easiest way is to initialize two counters nunRi ght and num ong to 0 and
increment the appropriate one when you see that a particular user's digit matches some
secret digit. Then print a message telling the user the result. The coding is in Listing
4.10.

Listing 4.10 The Mastermind class of objects, part 2

public void showUpdat edSt at us() [/ in Masterm nd
{ nunRight = 0;
num ong = O;
if (usersFirst == itsFirst)
nunRi ght ++;
else if (usersFirst == itsSec || usersFirst == itsThird)

numiA ong++;

if (usersSec == itsSec)
nunRi ght ++;
else if (usersSec == itsFirst || usersSec == itsThird)

numiA ong++;

if (usersThird == itsThird)
nunRi ght ++;
else if (usersThird == itsSec || usersThird == itsFirst)

numiA ong++;

JOpt i onPane. showMessageDi al og (null, " You have "
+ nunRight + " in the right place and "
+ numiNfong + " in the wong place.");

1y

Exercise 4.44 Under what circumstances can the user get one or more digits right if the
user chooses a negative number for the guess? Which digits are they?

Exercise 4.45 Explain what happens when the user chooses a positive four-digit or
longer number for the guess.

Exercise 4.46** Revise the Mastermind program so that, after each game played, it tells
the user the number of games played to date and the average number of guesses
required to get the right answer.

Exercise 4.47** Rewrite the Mastermind program so that askUser sNext Choi ce
calculates nunRi ght and numW ong. Have shoul dCont i nue and

showUpdat edSt at us use those calculated values.

4-31 Java Au Naturel by William C. Jones 4-31

4.11 Using BlueJd With Its Debugger

You can download for free the BlueJ IDE (this acronym stands for "Integrated
Development Environment"). BlueJ is an environment in which you can compile,
execute, and analyze Java classes. It uses true Java, since you have to first install a
recent official version of Java (from e.g. java.sun.com/products) in order to use BlueJ.
The primary purposes of the BlueJ environment are to help you debug your programs
and to let you manipulate objects one step at a time (execute a single method, see the
result, execute another method, etc.).

Go to the URL www.bluej.org and click on the icon for downloading the latest version.
Store it in a folder named bluej. You will then have a file with a name something like
bluej-115.jar. Open the bluej folder and click on that jar file. The installer will ask you for
the name of the folder where your current version of Java JDK is stored, which you
should supply (e.g., jdk1.3.1_01). You can then enter the BlueJ environment by clicking
on the icon specified in the installation instructions (probably bluej or bluej.bat).

Checking out an example

Click on the Project option, then click Open Project. Double-click on the examples sub-
folder in the bluej folder. Choose one of the examples listed there to try out. We
illustrate the process with the Hello example:

Click on the Hello sub-folder of examples and then click open. This loads the Hello
project into BlueJ. You will see a class box named Hello in a central workarea. Itis
cross-hatched to indicate that it is not yet compiled.

Click on Compile. This compiles all the classes showing in the workarea. The cross-
hatching disappears from the Hello class box to indicate this.

Right-click the Hello class box. You will see a list of the methods in the Hello class
that can be called without using an instance of the Hello class. There are but two: a
constructor new Hel | o() and public static void main(String[] args).
Click on the main method. It allows you to enter the ar gs parameter value, which
you may ignore (we rarely use command-line arguments). Then click OK to execute
the main method. A terminal window pops up with the output "Hello world", which is
all this main method produces.

Read the source code for the Hello class, which you can view by clicking on the
"Open Editor" option within the Hello class box. The source code is shown below.
Close the editor and click on the constructor new Hel | o() . You are asked for the
name of the Hello object you are constructing; enter samand click OK. You will see
an object box (rounded corners, "sam:" at the top) to represent this Hello object.
Right-click on the object box to see a list of the instance methods you can call for this
Hello object. Click on the only one shown, namely, public void go(). That will
execute sam go(), which causes a second "Hello, world" to appear in the terminal
window.

class Hello

{
public void go()
{ Systemout.printin("Hello, world");
}

public static void main(String[] args)
{ Hell o hi = new Hello();

hi . go() ;
}

4-32 Java Au Naturel by William C. Jones 4-32

In general, you can execute any class method or constructor by right-clicking on a class
box and then clicking the method name. You can execute any instance method by right-
clicking on an object box (which represents an instance of the class) and then clicking the
method name. You can also inspect the current values of all class variables (described
in Chapter Five) and instance variables by clicking on the Inspect option for an object
box. Figure 4.5 shows what the BlueJ display looks like at this point.

PABluel: hello _|O] x|
Project Edit Tools Wiew Help

Hew Class

———
—= Hello

Compile

View
[¥] Uses
[¥] Inheritance

Creating ohject... Done

Figure 4.5 The BlueJ display for the Hello class with an instance of Hello

Adding a new class to the project

Click New Class and give it the name Adder. A class box with that name will appear in
the workarea. Right-click it and choose Open Editor to create code for it. You will see a
minimal coding for the class, with an instance variable x and a method named

sanpl eMet hod. Replace the body of that method to have the following coding:

public int sanpleMethod (int y)
{ X =X +Yy;

return x;
}

Close the editor window, compile the Adder class (click Compile), then construct an
Adder object named adder _1 (right-click the Adder class box and click on new

Adder ()). Right-click on adder _1 and then click Inspect to see that the current value of
the instance variable x is 0. Figure 4.6 shows what the display looks like now.

4-33 Java Au Naturel by William C. Jones 4-33

PABluel: hello _|O] x|
Project Edit Tools Wiew Help
Hew Class Adder
———2
—= Hello
Compile
View
[v] Uses
[¥] Inheritance
adder_1: inherfed from Object #
Adder int sampleiethod(int
Ihapect
Remaove

Figure 4.6 The BlueJ display with the Adder class and an Adder instance

Right-click on adder _1 and then click i nt sanpl eMet hod(i nt y) to execute that
method. You have to enter the value of the parameter; type 5 and then click OK. BlueJ
will then tell you that the result of the method call sanpl eMet hod(5) is 5.

Repeat with parameter value 3; BlueJ will tell that the result of the method call

sanpl eMet hod(3) is 8. Inspect adder _1 to see that the instance variable x now
has the value 8. Make sure you understand why these things happen before you go on.
Play around with it all a bit more.

Using BlueJ with existing classes

Put the following classes from this chapter in a folder named ganes: GameApp,
BasicGame, and GuessNumber. Click on the Project menu choice and select Open Non-
BlueJ Project. Go to the folder that contains the games folder, click on ganes, then click
on Open in BluedJ. All three classes will appear in the workarea. Click on Compile to
compile them all.

You have created a BlueJ project unit to manage these three classes, so you can now
create instances of the class and try them out. For instance, once you create an instance
of GuessNumber, you can right-click on it, choose voi d pl ayOneGane() from the list
of methods inherited from BasicGame, and thereby play a game. During the game, right-
click the GuessNumber object from time to time and click Inspect so that you can see the
current values of the instance variables.

4-34 Java Au Naturel by William C. Jones 4-34

Debugging

The basic debugging process is to set a breakpoint in your coding where you want to
look closely at what is happening. You do this by choosing Open Editor for some class
and then clicking in the far left column, next to some statement in the coding. A stop sign
icon should appear there. That indicates the breakpoint you have set.

Now if you execute the coding, execution pauses when it comes to that stop sign (just
before executing that marked statement) and a debugger window appears. This window
shows the current values of all variables local to the method. You may also inspect the
current state of all the objects involved in the execution.

You may click the Step option to advance the execution by one statement at a time.
Inspect the values of variables at each point of interest. When you have seen all you
want to see, click on the stop sign to remove it, then click Continue in the debugger
window. Execution will then continue normally.

Figure 4.7 shows how the debugger window looks. You may also bring up the debugger
window on a program while it is running by clicking on the turning barber-pole icon. The
Call Sequence window shows what method calls are currently active. In this example,
you are currently executing the askUser sNext Choi ce method, which was called from
the askUser sFi r st Choi ce method, which was called from the pl ay OneGarne method,
which was called by clicking on the method call in the GuessNumber object box.

Eﬁf’g‘ Blued: Debugger [_|O|

Threads
main [stopped]

Update

Close

] Show system threads

fcan Sequence Instance Variables
GuessMumberaskUsershMextChoice Random randy = =ahject reference=
GuessMumber.asklsersFirstChoice intitsSecrethumber= 46
BasicGame. playOneGame intitsUsersMumber= B0

String itsSecretord = "duck”

String itslsersWord = "noneg”

ocal Variables
java.lang.String s ="35"

B | L » | X

Step Step Into Continue Terminate

Figure 4.7 A debugger window for Blued

This has been a very short introduction to how to use BlueJ. You will understand it much
better if you read the complete 30-page tutorial available at www.bluej.org (click on
Documentation) and try it out with the example programs and with your own programs.

4-35 Java Au Naturel by William C. Jones 4-35

4.12 Review Of Chapter Four

Listing 4.3, Listing 4.5, and Listing 4.7 illustrate almost all Java language features
introduced in this chapter. This review includes the preceding Interlude.

About the Java language:

>
>

VVVY

package X; as the top line of a file makes the class in that file in package X.

The import directive i nport javax.sw ng.JOpti onPane goesin a
compilable file before any class definitions if you use JOptionPane in some class in
the file. Similarly, use i nport java.util.Random if you use Random.
However, you may instead give the full name (j ava. uti | . Random or

j avax. swi ng. JOpt i onPane) at each mention of the class.

If you want to import several classes from the same package, e.g., from

java. util, use the import directive i nport java.util.*;. Classes from the

j ava. | ang package (e.g. System, String, Object, Integer) do not need a directive.
You may assign the value nul | to any object variable. It signals the absence of any
actual object reference stored in the variable.

The result of evaluating a plus sign between two strings of characters or between a
string and a number is the first string of characters followed directly by the second. If
one is a number, it is converted to a decimal numeral (a string of characters) before
the concatenation. The empty String "" is the String value whose length is zero.
If the newline character \ n is within the quotes of a String literal, it causes the
start of a new line.

You may declare a variable in a class outside of any method. Then each object of
the class has its own value for the variable if it is an instance variable (which, as you
will see in the next chapter, requires that it not be declared using st ati c).

If one class extends another, then each public method and public variable of the
superclass is indirectly in the subclass. If a class does not explicitly extend any
class, then it makes the default extension of the Object class.

Within the body of an instance method or constructor, the use of an instance variable
without saying which object it belongs to signals that it belongs to the executor of the
instance method or to the object being constructed, respectively. The use of t hi s
inside a constructor is a reference to the object that is being constructed.

A class must have one or more constructors, to say what happens when an
instance of the class is created. If you do not explicitly define a constructor, one will
be provided for you by the compiler. This default constructor has no parameters
and no commands other than super ().

If the declaration of an instance variable assigns it a value, that takes effect when the
constructor is called. The runtime system supplies a default initial value if you do
not: zero ornul I orfal se, as appropriate.

For any int variable x, x++ increments x and x-- decrements x.

The six comparison operators are > < >= <= == I=,

The five operators for int values are +, -, *, /, and % (for remainder).

The signature of a method is its name followed by parentheses containing the types
of its parameters (not their names). Different methods can have the same name if
they have a different parameter pattern (signature) or are in different classes. This is
overloading of a method name if they are in the same class.

If a subclass defines an instance method with the same signature as an instance
method in its superclass, that is overriding of a method definition. Suppose the
signature is doSt uf f (i nt) and samrefers to an object of the subclass. Then
sam doSt uf f (3) calls the subclass method and sam super. doSt uf f (3) calls
the superclass method.

One of the two rules of precedence people get wrong most is that one should put
parentheses around the whole (sonmeType) What ever expression when followed

4-36 Java Au Naturel by William C. Jones 4-36

by a bracket [or dot. The other one is that ! takes precedence over && which in
turn takes precedence over || . See Section 4.8.

» Figure 4.8 describes the remaining new language features. The Initializer part of a
for-statement can assign a value to the loop control variable (the only variable
mentioned in the Condition of the for-statement whose value changes during
execution of the loop). The Initializer part may be the declaration and assignment of
the loop control variable if that variable is not used outside of the for-statement.

public O assNane (ParaneterList) declaration of constructor method.

{ StatenentGoup The parameters are optional. The first

} statement should be super(...)

super (Argunentlist); statement calling the superclass's

constructor. Only allowed as the first
statement in the constructor

for (Initializer ; Condition ; statement that executes the Initializer

Updat e) part first, then repeats
St at enent test-Condition-do-Statement-do-Update,
quitting when the Condition is false

do statement that repeats

{ Statenent do-Statement-test-Condition,

}while (Condition); quitting when the Condition is false

private Type Vari abl eNane declaration of instance variable outside

= Expression; | any method. Initializing is optional
super. Met hodNane (Argunent Li st); statement that calls the method of that
name in the superclass

Figure 4.8 Declarations and statements added in Chapter Four

About some key Sun standard library methods:

>

System exi t (0) terminates an execution of a program immediately. A program
that has a graphical user interface should explicitly execute this statement when it is
done, because otherwise some computer systems lock up. The 0 in the parentheses
indicates a normal termination.

System out. printl n(sonmeString) displays the value in the parentheses in the
terminal window. The argument may also be a numeric value.

some(bj ect . equal s(ot her Cbj ect) tests whether the two objects are identical.
JOpt i onPane. showMessageDi al og(nul |, nmessageStri ng) displays the
messagesSt ri ng on the screen until the user clicks OK or closes the window.

JOpt i onPane. show nput Di al og(pronpt Stri ng) displays the

pr onpt St ri ng and waits for input. It returns the String input, except it returns

nul | if the user clicks the Cancel button.

JOpt i onPane. showConfi rnDi al og(nul |, nmessageString) displays the
nmessagesSt ri ng on the screen with three buttons labeled Yes, No, and Cancel, until
the user clicks one of the buttons or closes the window. It returns the int value

JOpt i onPane. YES_OPTI ON if the user clicked the Yes button.

new Randomn() constructs a Random object.

someRandom nextInt (limtlnt) returns an int value chosen randomly with
equal likelihood from zero up to but not including |imtlnt.

I nt eger . parsel nt (soneStri ng) returns the int value that the String value
represents, assuming that it is not badly-formed with letters or other defects.

General note: In these review sections, we normally specify Sun standard library
methods as generic method calls, so you see how they are called: The executor of
an instance method is named "sone" followed by the executor's class (e.g.,
someRandon), and the parameters are specified the same way (e.g., someSt ri ng)
except that parameters may be numeric or boolean or the like (e.g. sonel nt) and
"sone" may be replaced by a more descriptive word (e.g., | i m t 1 nt).

4-37 Java Au Naturel by William C. Jones 4-37

Other vocabulary to remember:

>

>

A natural constructor is a constructor that assigns the values of its parameters to all
or almost all of the instance variables of the class.

Encapsulation means primarily preventing outside classes from changing instance
variables directly (i.e., without calling a method in the class). It includes declaring
instance variables as pri vat e. The purpose is abstraction: sending a message to
an object to have a complex task done rather than doing the task directly.

A local variable or parameter shadows an instance variable when they have the
same name. The name refers to the local variable instead of to the instance variable.
A binary operator is a symbol that combines two values to obtain a new value. &&
and + are binary operators. But ! is aunary operator: You apply it to only one
value to obtain a new value.

Software is reusable if it is designed to be used in several different programming
situations. A driver program is an application program whose only purpose is to test
the methods of a class thoroughly.

A method call is polymorphic if it calls an instance method and the executor could
be from any of two or more classes that have differing definitions of the method being
called. Polymorphism is the execution of polymorphic method calls.

Answers to Selected Exercises

4.3

4.4

4.7

4.8

4.9

4.11
4.12
4.13

4.14

4.15

public boolean shouldContinue()
{ if (itsSecretWord.equals ("goose") || itsUsersWord.equals ("duck"))
return itsSecretWord.equals (itsUsersWord);
itsSecretWord = "goose";
return false;

Add this declaration outside of any method: String itsMark ="";

Add this statement early in askUsersFirstChoice: itsMark = "x";

Add this statement to askUsersNextChoice: itsMark = itsMark + "x";

Add this statement to showFinalStatus: itsMark ="";

Replace the statement in the body of shouldContinue by this statement:
return ! (itsSecretWord.equals (itsUsersWord) || counter.equals ("xxxxx"));
public SmartTurtle()

{ super();

public RedTurtle()

{ super();
switchTo (RED);
move (-180, 0);

public class NamedTurtle extends Turtle
{ private String itsName;
public NamedTurtle (String name)
{ super();
itsName = name;

}
public String getName()
{ return itsName;
}
}
"X"+ (x +y)is "x28" and ("X" + X) +y is "x235".
t4.toString() is "135", but it should be "1305".
Insert the following at the beginning of the toString() method body:
if (itsMin < 10) { if (itsHour < 10) return ("0" + itsHour) + "0" + itsMin;
else return (" + itsHour) + "0" + itsMin; }
else
public int getAge (int currentYear)
{ if (currentYear < itsBirthYear)
return O;
else
return currentYear - itsBirthYear;

}

public Time add (Time that)

{ Time valueToReturn = new Time (this.itsHour + that.itsHour, this.itsMin + that.itsMin);
if (valueToReturn.itsMin >= 60)
{ valueToReturn.itsMin = valueToReturn.itsMin - 60;

4-38 Java Au Naturel by William C. Jones 4-38

valueToReturn.itsHour++;

valueToReturn.itsHour = valueToReturn.itsHour % 24;
return valueToReturn;

4.21 -5 + randy.nextInt (11) and 2 * (15 + randy.nextInt (11)), assuming Random randy.
4.22 Replace the last statement of the constructor by:
itsSecretNumber = 200 + randy.nextint (101);
Replace the string literal in askUsersChoice by: "Guess my number from 200 to 300:".
4.23 Replace the statement in the body of shouldContinue by:
return itsUsersNumber < itsSecretNumber - 2 || itsUsersNumber > itsSecretNumber + 2;
Add a showFinalStatus method to GuessNumber with this statement in its body:
if (itsUsersNumber != itsSecretNumber)
JOptionPane.showMessageDialog (null, "close enough; you win");
else
JOptionPane.showMessageDialog (null, "That was right. \nCongratulations.");
4.24 Guess 50. If you are wrong, you know there are at most 50 possible right answers.
Guess 25 or 75, depending on whether the answer was "too high" or "too low".
If you are wrong, you know there are at most 25 possible right answers. Continue guessing
in the middle of the range of possible right answers, reducing the number of possible right
answers to 12, 6, 3, and 1 in that order. The seventh guess will then get it right.
4.25 public class FindSmallest
{ public static void main (String [] args)
{ JOptionPane.showMessageDialog (null, "Finding the smallest of a group of integers");
String prompt = "Enter an integer. Click Cancel when done.";
String s = JOptionPane.showlnputDialog (prompt);
if (s == null)
System.exit (0);
int smallest = Integer.parselnt (s);
s = JOptionPane.showlnputDialog (prompt);
while (s != null)
{ int input = Integer.parselnt (s);
if (smallest > input)
smallest = input;
s = JOptionPane.showlnputDialog (prompt);

JOptionPane.showMessageDialog (null, "The smallest was " + smallest);
System.exit (0);
}

4.30 public class Liar extends Person
{ public Liar (String first, String last)
{ super (first, last);

}
public String getFirstName()
{ if (new java.util.Random().nextInt (2) == 1)
return "Darryl";
else
return super.getFirstName(); // you cannot mention itsFirstName here
}
}
4.31 Replace itsNumEmpty by itsNumSlots in the declaration of the instance variables.
The statement in the body of getNumEmpty should be: return itsNumSilots - itsNumFilled.
Omit the statements that mention itsNumEmpty in putCD and takeCD.

4.35 I(y+2<3)&&z.isTall) OR !(y+2< 3 && z.isTall())
((Boss) person).getJob()
4.36 In the two cases when b is true and d is false and c is either true or false,
(b]] c) && d is false but b || (c && d) is true. In the other six cases they match.
4.38 Delete "do {" and the line beginning "}while". Put the following just before the last statement:

if (choice < 1 || choice > itsMaxToTake)
{ choice = 1;
JOptionPane.showMessageDialog ("lllegal; changed to 1.");

4.39 Replace the last statement of askUsersFirstChoice by the following:
if (JOptionPane.showConfirmDialog (null, "Taking up to " + itsMaxToTake + " and starting with"
+ itsNumLeft + . Will you go first?") == JOptionPane.YES_OPTION)
askUsersNextChoice();

4.44 A negative guess will still get a digit right if the guess's digit is 0 and the secret digit is also 0.
This can happen at any or all of the three digits.
4.45 usersFirst will be wrong, since it will be 10 or more. The other two digits will be

right or wrong according to whether they would have been without the extra digits.

5-1 Java Au Naturel by William C. Jones 5-1

5 Class Methods and Class Variables

Overview

This chapter shows you how to define and use methods and variables that do not need
executors, such as the Vi c. say method introduced in Chapter Two:

Sections 5.1-5.3 describe and illustrate class methods, class variables, and final
variables.

Sections 5.4 and 5.5 develop a full implementation of a Vic simulator, which
completes the top-down development of Vic software (first see how to use the
methods, then learn how to define them). It uses two new String methods,
substring and | engt h. If you want to move on quickly to the material in later
chapters, you may postpone or skip everything in Chapter Five after Section 5.4.
Sections 5.6-5.8 describe software for working with Networks. The Network software
illustrates the use of for-statements, class methods, class variables, and final
variables. It does not involve any new language features.

Section 5.9 explains and illustrates the use of recursion. The first half of the section
is independent of Networks.

5.1 Defining Class Methods

A method to find an integer average of several integer values would be quite useful. If
the sumof a group of 5 numbers is 49, the average is best approximated as 10, but if
their sumis 46, the average is best approximated as 9. You cannot calculate this
average as sum / count, because you would get 9 in either case; division of int values
drops the fractional part. You could simply add half of the count before you divide and
then have the method return that result:

return (sum+ count / 2) / count;

This works for positive numbers. But if you try this when the sumis negative, it gives the
wrong answer: -49 + 5/ 2 is-47and -47 /| 5 is-9; -46 + 5/ 2 is-44 and
-44 | 5 is-8. Some more thought leads you to the correct answer, as follows:

public int average (int sum int count)
{ if (sum>= 0)
return (sum+ count / 2) / count;
el se
return (sum- count / 2) / count;

The aver age method now computes the correct value: average(-49, 5) returns
the number -10 and aver age(-46, 5) returns the number -9. However, something
feels wrong here. This is an instance method, but there is no instance to act as the
executor. The method deals with numbers only, no objects at all. You would have to
create an object of the class to which the method belongs before you could use the
aver age method, and then the object would be irrelevant to the calculation.

Class methods

Java provides a mechanism to handle such situations: The word st ati c in the method
heading means that it is a class method, i.e., you may call it with the name of the class in

5-2 Java Au Naturel by William C. Jones 5-2

place of the executor. In such a method you cannot use t hi s, either explicitly or by
default, since there is of course no executor that t hi s refers to. So the above method
should have its heading begin public static int average.

Several different calculations come up from time to time involving numbers alone, so it is
useful to have an entire class containing such utility methods. We will call it MathOp. So
X = Mat hOp. aver age(49, 5) stores 10 in x. Listing 5.1 describes the MathOp class,
with the aver age method and another useful method for raising a number to a power of
2: Mat hQp. power OF 2(5) returns the number 32 and Mat hQp. power OF 2(10)
returns the number 1024. Note that power O 2 illustrates a for-statement that does not
have any initializer part (because expo is already initialized). It multiplies power by 2
once for each time through the loop.

Listing 5.1 The MathOp utilities class

/[** O ass nethods that do useful things with nunbers. */

public class Mat hOp

{
/** Return the value of 2 to the power expo. */
public static int powerO2 (int expo)
{ int power = 1;
for (; expo > 0; expo--)
power = power * 2;
return power;
Y 1
/** Return sum divided by count rounded to the nearest int. */
public static int average (int sum int count)
{ if (sum>= 0)
return (sum+ count / 2) / count;
el se
return (sum- count / 2) / count;
Y 1
}

Both of these MathOp methods could cause the program to fail in some situations.
These defects are corrected in the exercises. Can you see what those situations are
without peeking ahead to the exercises?

Utilities classes

We call a class with no instance methods or instance variables or main method a utilities
class. MathOp is an example, and you will see more later. Since all of its methods are
class methods, there is no point in creating objects of MathOp type. Some people call
such a class a non-instantiable class. You could think of "MathOp" as being an
"operative”, a person who carries out certain math-related tasks for you. It does not have
to be constructed because it has no state (i.e., instance variables that store information).

It is of course possible for outside classes to create MathOp objects (though pointless).
Since MathOp does not define a constructor explicitly, outside classes can use new
Mat hOp() , the default constructor supplied by the compiler. You can prevent this by
adding a MathOp constructor and declaring it pri vat e, as in the following:

5-3 Java Au Naturel by William C. Jones 5-3

private Mat hOp()
{ super();

Now the default constructor does not exist, since the compiler supplies it only when no
other constructor is defined. And the actual constructor is not visible to outside classes,
since it is private. Some people feel it is a good idea to do this.

Four categories of methods

The phrase that precedes the return type (or void) in a method's heading tells which of
several categories it is in (X denotes the class in which the method is defined):

publ i c: Callable from any class with an executor of class X.

pri vat e: Callable only within class X with an executor of class X.

public static: Callable from any class with X in place of the executor.
private static: Callable only within class X with X in place of the executor.

If you call the method from within class X, you may omit the executor or class name
before the dot -- it defaults to the executor of the method it is in or to the class it is in,
respectively. A class method can be called with an executor if you wish, a variable that
can refer to an object of the class, but there is no advantage in doing this.

Independent class methods

The aver age and power O 2 methods in Listing 5.1 could be put in any classes at all
and they would work the same. They are independent class methods. Independent
class methods could also be called utility methods. The Vi c. say and Vi c. reset
introduced in Chapter Two are also class methods. They are defined in the Vic class. A
key difference between them and the Mat hQp. aver age and Mat hQp. power O 2
methods is that the Vic methods can only be in the Vic class. This is because the Vic
class methods access private parts of the Vic class that you cannot otherwise get to. So
those two Vic class methods are not independent class methods.

L anguage elements
A declaration of a method can have the word static before its return type.
Such a method can be called using the class name in place of an executor.

Exercise 5.1 The aver age method causes the program to fail if count is zero, since
division by zero does not make sense. Modify the method to return zero in such cases.
Exercise 5.2 The power O 2 method returns 1 whenever the expo is negative, which
is okay. But it produces the wrong answer if expo is more than 30, because the largest
possible int value is 2 - 1. Modify the method to return 2% in such cases.

Exercise 5.3 Write a method public static int power (int base, int

expo) for MathOp: It returns base to the expo power. Return -1 in all cases in which
the power cannot be computed using int values. But return zero if either parameter is
negative. Hint: The largest int value is 2,147,483,647.

Exercise 5.4* Write a method public static int gcd (int one, int two) for
MathOp: It returns the greatest common positive divisor of its two int parameters. Hint:
If either is negative, multiply it by -1; then repeatedly replace the larger by the remainder
from dividing the larger by the smaller until one goes evenly into the other, in which case
that one will be the greatest common divisor. What do you do if either is zero?

Exercise 5.5* Under what circumstances can a call of a class method be polymorphic?
Exercise 5.6** Write a MathOp class method that finds the factorial of a given int value
(e.g., 6! is6 * 5* 4 * 3 * 2 * 1). Watch out for negatives.

5-4 Java Au Naturel by William C. Jones 5-4

5.2 Declaring Class Variables; Encapsulation

You could put the following variable declaration in the Person class of Listing 4.4,
outside of every method definition. This declaration means that the variable named

t heNunPer sons is initially zero (i.e., when the program starts), though it is expected to
change as the program executes:

public static int theNunPersons = O;

A local variable is declared inside a method definition. You can only use it inside that one
method definition. Since t heNunPer sons is not a local variable, you can use it
everywhere. The word st ati ¢ means that, if you mention it outside of the Person
class, you may refer to it as Per son. t heNunPer sons, i.e., with the name of the class.
So it is called a class variable, analogous to a class method. That way, (a) the compiler
knows where to look for its declaration, and (b) you can declare a different variable
named t heNunPer sons in any other class if you want. Note that this is the same
access rule Java has for class methods.

A field variable is any variable declared outside any method definition. If it is declared
with the word st ati c, it is a class variable (e.g., t heNunPer sons just described). The
class itself contains the only copy of class variables such as t heNunPer sons.

If a field variable is not declared using the st at i ¢ keyword, it is an instance variable
(e.g., i t sFi r st Namre for the Person class). Each instance (object) of a class contains
its own separate copy of the instance variables. For example, if sam and sue are
Person variables referring to Person objects, then sam i t sFi r st Nane is a completely
different variable from sue. i t sFi r st name but sam t heNunPer sons and

sue. t heNunPer sons are the same variable. In general, use an instance variable to
store information about an individual object, but use a class variable to store information
about the class as a whole (information that is not specific to an individual instance).

You could add the statement t heNunPer sons++; to the constructor publ i ¢

Per son(). Thent heNunPer sons keeps track of the number of completely new Person
objects that have been created so far. Any outside class can find out from the Person
class how many it has made by looking at the value of Per son. t heNunPer sons.

Unfortunately, no outside class can trust that Per son. t heNunPer sons truly does tell
the number of Persons that have been made. After all, any other outside class could
underhandedly change the value of Per son. t heNunPer sons, perhaps doubling it to
fool the other classes.

Problem: This way of making information available makes the information worthless.
Solution: Encapsulation, also known as information-hiding.

Encapsulation

Encapsulation basically requires that a class not let outside classes change its variables.
So field variables should generally be declared as private. That way nothing outside of
the class that owns the variable can sneak in and change the state of the variable without
the owner class knowing about it. We will add to the Person class the following
declaration of t heNunPer sons instead of the one given earlier:

private static int theNunPersons = 0;

5-5 Java Au Naturel by William C. Jones 5-5

You can still make available to outside classes the value of the variable t heNunPer sons
by having the following class method in the Person class:

public static int getNunPersons()
{ return theNunPersons;
} | | =======================

Any outside class can then use Per son. get NunPer sons() to get the value of
t heNunPer sons. But no outside class can change its value. In general, any method or
field variable that does not need an executor should be declared as a class method.

Failure to encapsulate was the most pernicious cause of bugs in programs in the early
decades of programming. With encapsulation, any outside classes that modify these
field variables must go through the class's methods to do so, if then. This makes bugs
less likely. Listing 5.2 (see next page) contains the complete Person class as revised
from Listing 4.4.

In the Nim class of Listing 4.8, each game object should have its own individual value of
i tsNunmieft andit sMaxToTake, but they can all share the same random number
generator. So it could be declared outside of every method as follows:

private static java.util.Random randy
= new java. util.Random();

Initial values of class variables

A class variable exists independently of any instance of the class. You should almost
always give it an initial value where it is declared. If the initial value is not given there, the
compiler gives it a default initial value: zero for a numeric variable, nul | for an object
variable, and f al se for a boolean variable.

Initializations of class variables at runtime are done when the class is first loaded, before
any instances of the class are created, and in the order they are listed in the class
definition. So the initialization of one class variable should not refer to the value of a
class variable declared later in the class definition.

Programming Style It is good style to explicitly state in your classes the initial
value of a class variable when your logic requires it to have one, rather than
relying on the default value. Note that Listing 5.2 does this. That way a reader
of the class does not have to stop and think what the default value is.

Typical structure of an information facility

Listing 5.2 illustrates a very common way of equipping a class to provide certain
information about itself. In this case, the information to be provided is the number of
Person objects created so far in the program. Listing 5.2 has three relevant parts:

(8) A class query method so that others can access the information, e.g., the method call
Per son. get NunPer sons() . This kind of method usually just returns the value of a
class variable (t heNunPer sons in this case).

(b) The declaration of the class variable with its initial value specified.

(c) Statements to update the value of the class variable in each method that modifies the
information to be provided (only the constructor in Listing 5.2).

You have seen a similar structure for equipping an object to provide certain information
about itself. An example is the last name of a Person. Listing 5.2 has three relevant parts:

5-6 Java Au Naturel by William C. Jones 5-6

(&) An instance query method so that others can access the information, e.g., the
method call sue. get Last Nanme() . This kind of method usually just returns the
value of an instance variable (i t sLast Nan® in this case).

(b) The declaration of the instance variable, sometimes with its initial value specified.
However, the initial value may be specified in the constructors instead (as is done for
i t sLast Nane in Listing 5.2).

(c) Statements to update the value of the instance variable in each instance method that
modifies the information to be provided, e.g., sue. set Last Name(" Jones").

Listing 5.2 The Person class of objects

public class Person extends Object

{

private static int theNunmPersons = 0; // initialize num
[EEEEEEEEEEr i

private String itsFirstNane;

private String itsLastNane;

private int itsBirthYear;

/** Construct a new Person with given names and birth year. */

public Person (String first, String last, int year)

{ super();
t heNunPer sons++; /] update num
itsFirstNane = first;
i tsLast Nane = | ast; // initialize |ast nane
itsBirthYear = year;

|

[** Tell how many different Persons exist. */

public static int getNunPersons() // access num
{ return theNunPersons;
|

/[** Return the birth year. */

public int getBirthYear()
{ return itsBirthYear;
|

[** Return the first nane. */

public String getFirstName()
{ return itsFirstNane;
|

/** Return the |ast nane. */

public String getLast Nane() [/l access | ast nane
{ return itsLast Nane;
|

/** Replace the | ast nanme by the specified value. */

public void setlLastNanme (String nane) // update |ast nane
{ itsLastName = nane;
|

5-7 Java Au Naturel by William C. Jones 5-7

Scope and positioning of a field variable declaration

The declaration of an instance variable or class variable can be put anywhere in the
class. Its position in the listing does not affect where it can be used within methods.
Some people like to put all instance variables at the end of the class, and some like to put
them at the beginning. The scope of a variable is where it can be used without being
directly preceded by a dot and an object or class reference:

The scope of a class variable is its entire class.

The scope of an instance variable is all instance methods and constructors in its
class.

The scope of a formal parameter is its method's body.

The scope of a variable declared in the initializer part of a for-statement is the entire
for-statement.

The scope of any other local variable (declared in a method) is from the point where it
is declared to the end of the innermost pair of braces within which it is declared.

Similarly, the placement of methods within the class definition does not affect how they
are called within other methods. But if one method calls another in the class, most
people find it easier to understand if the method doing the calling comes before the
method being called.

Technical note If you declare a variable in e.g. the third statement of a method, you are
not allowed to refer to that variable in the first two statements of that method. It is_as if
the creation of the variable does not occur until that third statement. However, the
bytecode that the compiler produces creates all of the local variables of a method when
the method begins execution, regardless of where they are declared. The point of
declaration does not determine when the variable is created at runtime, it only determines
where the variable can be used.

L anguage elements
A variable declaration that is outside of any method can have the word static before itstype.
Such a variable can be used with the class name in place of its executor.

Exercise 5.7 Change the Person class of Listing 5.2 so that any outside class can find
out the first name of the Person who was most recently created. Use "none so far" for
the answer if no Persons have yet been created.

Exercise 5.8 Write a method public static int range (int one, int two)
for the MathOp class in Listing 5.1: The method returns an integer chosen at random
within the range of the two parameters (i.e., between or equal to the two parameters).
Use a Random class variable.

Exercise 5.9* Change the Person class of Listing 5.2 so that any outside class can find
out the smallest birth year of all the Persons who have been created so far. Use -1 for
the answer if no Persons have yet been created.

Exercise 5.10* Change the Person class of Listing 5.2 so that any outside class can find
out the average birth year of all the Persons who have been created so far. Use 0 for the
answer if no Persons have yet been created.

5-8 Java Au Naturel by William C. Jones 5-8

5.3 Final Local, Instance, And Class Variables

If a variable declaration has the word fi nal immediately before the name of the type,
the compiler will not let any statement change the value any time after you give it its initial
value. Such variables are called constants in most programming languages, but Java
programmers tend to call them final variables.

Final class variables

The Time class constructor in Listing 4.5 has the phrase itsMn = itsMn + 60 in
one method. Other methods would also mention 60, since that is the number of minutes
in an hour. The logic of the Time class would be clearer if you declare a final class
variable with the value 60 and use it instead. By convention, we write the variable name
all in capital letters if it is a final class variable. So the declaration in the Time class, and
the corresponding change in the Time constructor, could be as follows:

public static final int MN_PER HOUR = 60; // class variable
itsMn =itsMn + MN _PER HOUR;

The BasicGame class in Listing 4.3 has an instance variable i t sSecr et Wr d. Every
BasicGame object has exactly the same secret word, though they may have different
user's words (depending on what the user chose for that game). It would make more
sense to have just one copy of this value for the whole class, rather than one for each
BasicGame object. Since the value of this variable never changes, you could write the
class variable declaration in the BasicGame class, and the revised statement in the
shoul dCont i nue method, as follows:

public static final int SECRET = "duck"; [/ class variable
return ! SECRET. equals (itsUsersWrd);

Programming Style Any constant value that is used in two or more methods in
a class should be declared as a final class variable and that variable used in
place of the constant value. The name of the variable should be all in capital
letters. It may or may not be public. Some exceptions: 2, 1, 0, and ™.

This book lists field variables in the order publ i c static final,thenprivate

st ati c, then a divider //// as shown in Listing 5.2, and then the instance variables. This
book also puts a prefix of "the" on almost all names of non-final class variables, and
never anywhere else. This hallmark, along with the prefix "its" on almost all names of
instance variables, makes bugs less likely. If you do not do this in your own definitions,
at least obey the following safety principle: Never name a parameter or local variable the
same as a class variable or instance variable.

Final instance variables

In Listing 5.2, no provision is made for changing two of the values of the Person instance
variables once they have been assigned. This should be made clear in the declarations:

private final String itsFirstNane;
private final int itsBirthYear;

They could be made publicly visible if there is a good reason to do so, because that
would not violate the encapsulation principle: No outside class could change the value of
any instance variable of any Person object. But as it is, we have the getXXX methods to
retrieve any one of the values, so we need not make them public. In general, it is
preferable to access even final instance variables through getXXX methods rather than
directly -- it makes it easier to upgrade the software in the future.

5-9 Java Au Naturel by William C. Jones 5-9

The value of a final instance variable must be assigned in the declaration or else in every
constructor of the class. You can see that the Person class does the latter, so the
addition of the word fi nal is the only change needed. When all of an object's instance
variables are final, the object is said to be immutable (because you cannot change its
attributes once it has been created). String values, for instance, are immutable.

Final local variables

You may declare a variable that is local to a method as fi nal , in which case you should
immediately assign its final value at the point where you declare it. This should normally
be done if you use a constant value in two or more places within the method. Some
people like to make the name all in capital letters; others reserve that for class variables.

Some people go so far as to say that every constant value used in a method should be a
named final variable, other than perhaps 0, 1, and 2 and the empty String. This book
does not go that far. That principle would require that every string literal be named.

Caution Do not use the words private or public inside a method definition.
If you make this mistake, the message that the compiler gives you can be
baffling. Local variables are by nature private, since you can only mention
them inside their methods. But only class variables or instance variables
are explicitly designated as public or private.

L anguage elements
A variable declaration can have theword final beforeits type.
The value of such avariable cannot be changed once it has been assigned.

Exercise 5.11 Rewrite Listing 4.5 to store 10 in a named local final variable, then use it
wherever it is appropriate.

Exercise 5.12* Rewrite Listing 4.6 to store both 1 and 100 in named public final
variables standing for the lower and upper limits, then use them wherever appropriate.
Exercise 5.13* Rewrite the Nim constructor in Listing 4.8 to use local final variables for
the numbers 21 and 3, then use them wherever it is appropriate.

5.4 Two New String Methods

You now have enough background to understand and profit from a complete simulation
of the Vic's Programmable CD Organizer. Of course, no one can write the actual
program in Java; since it moves armatures and gears and springs, the Vic engineers
have to write it in native code. If you were to look at their implementation, you would see
almost all the methods with the notation nati ve and no method bodies.

The Vic simulation we develop in these two sections will not involve graphics; it is too
early for that. But the simulation will produce tracing output to the terminal window such
that, each time one of the four action instance methods is executed, you will see a full
description of that sequence of slots. The simulation makes heavy use of class variables
and final variables. And it introduces two new String methods from the standard library.

The data structure

Each sequence of slots is represented by a string of non-blank characters, where 0
signals an empty slot and any other character signals a slot that contains a CD whose
name is that character. The instance variables are i t sSequence (the String), i t sPos
(a position in the sequence) and i t sl D (a positive int). So get Posi ti on only needs
one statement to report a string of characters containing the current position and ID:

return itsPos + "," + itslD

5-10 Java Au Naturel by William C. Jones 5-10

The value of i t sl Dis also used in the tracing output, to tell you which Vic object is being
described. The t r ace method each action instance method calls is the following. The
method call System out. pri ntl n has a single String parameter that it prints to the
terminal window:

private void trace (String action)
{ Systemout.println ("Vic# " + itsID+ ": " + action

+ itsPos + "; sequence= + i tsSequence);

The Vi c. say method can use this output statement as well, having just one statement:
Systemout.println ("SAYS: " + nmessage);

The backUp method first checks that i t sPos is greater than 1, since otherwise the
program is to terminate immediately. Then it decrements i t sPos and calls the trace
method in an obvious way. The logic for backUp and the three one-liner Vic methods
discussed so far is in the upper part of Listing 5.3 (see next page). Syst em exi t (0)
is not a graceful way of terminating; adding an explanatory message is an exercise.

String methods

Before you go further, you need to know about the two methods in the String class that
this software uses. One is the | engt h method: s. I ength() returns the number of
characters in the String s. The other is the subst ri ng method, which returns a new
String value that is a portion of the executor. For instance, s. substring(2, 4)

returns the String value consisting of the characters numbered starting from 2 and going
up to but not including 4. That is, you get the characters numbered 2 and 3, in that order.

You also need to know that Java numbering of the positions in a String is zero-based:
The first character is numbered 0, the second is numbered 1, the third is numbered 2,
etc. Therefore, "abcdef ". substri ng(2,5) isthestring "cde". This all means that
the seesSl ot method can be coded as just one statement, as follows.

return itsPos < itsSequence.length();

For instance, if i t sSequence has length 6, and thus numbers the characters 0 through
5, i t sPos is beyond the end of the sequence of slots if i t sPos is 6. For the seesCD
method, you must look at the substring consisting of one character starting at position

i t sPos, which is expressed in Java as follows:

i tsSequence. substring (itsPos, itsPos + 1);

You now have all the information you need to understand the part of the Vic simulation
that does not involve the stack or initializing Vic objects. Study Listing 5.3 for a while (a
long while) to be sure it makes sense to you before you go on. A named constant String
value NONE represents the absence of a CD, thus has the value "0". The coding for
nmoveOn parallels backUp. Figure 5.1 describes the two new String methods.

s. length()
is the number of characters in the String object referred to by s.

s.substring(start, end)

returns a new String object consisting of the characters of s in positions start
through end-1. The program can crash unless 0 <= start <= end <= s.length().

Figure 5.1 Two String methods

5-11 Java Au Naturel by William C. Jones 5-11

Listing 5.3 The Vic class of objects, part 1 of a String-based simulation

public class Vic extends Object
{
private static final String NONE = "0";
[EEEEEEEEEEr g
private String itsSequence = "";
private int itsPos = 1;
private final int itslID; // so tracing output can identify it

public String getPosition()
{ returnitsPos + "," + itslD
|

public static void say (String nessage)
{ Systemout.println ("SAYS: " + nessage);
|

private void trace (String action)
{ Systemout.println ("Vic# " + itsID+ ": " + action

+ itsPos + "; sequence= " + itsSequence);

1y

public void backUp()
{ if (itsPos == 1)
Systemexit (0);
i tsPos--;
trace ("backUp to slot ");
|

public void moveOn()
{ if (! seesSlot())
Systemexit (0);
i t sPos++;
trace ("mveOn to slot ");
|

publ i c bool ean seesSl ot ()
{ return itsPos < itsSequence.|ength();
|

publ i c bool ean seesCIX)
{ if (! seesSlot())
Systemexit (0);
String s = itsSequence. substring (itsPos, itsPos + 1);
return ! s.equals (NONE);
|

Chaining

If a method call returns an object value, you may use the method call for the executor of
another method call. This is called chaining of method calls, or sometimes cascading.
For instance, the following statements are legal:

5-12 Java Au Naturel by William C. Jones 5-12

/I replace spot.equals (getPosition()) by:

getPosition().equals (spot);

/l replace the last two statements of seesCD by:

return itsSequence.substring (itsPos, itsPos+1l).equals (NONE);
/l replace the first three statements in Listing 4.1 by:

new Basi cGane() . pl ayManyGanes() ;

Exercise 5.14 Write a private class method in the Vic class that has a String parameter
and an int parameter and returns the one-character substring at the given position. Then
replace more complex coding by a call of that method in Listings 5.3, 5.4, and 5.5.
Exercise 5.15* An attempt to noveOn or backUp or to evaluate seesCDwhen it is
illegal causes an abrupt Syst em exi t (0) without explanation. The user would
appreciate a tracing output in such cases. Revise these three methods to call a private
method that explains the problem (with showMessageDi al og) and then terminates.

5.5 String Implementation Of A Vic Simulator

The stack operations

Since Vics all share the same stack, we begin by declaring a class variable t heSt ack,
initially an empty string of characters. The st ackHasCD class method then tells whether
the string is not empty, i.e., it tells whether t heSt ack. | engt h() is positive.

The process for t akeCD first checks that seesSl ot () istrue; if not, the program
terminates. If seesCD() isf al se, nothing happens, otherwise t heSt ack appends
the substring it sSequence. substring(itsPos, itsPos+l).Also,itsSequence
puts NONE in place of that substring. The way that i t sSequence puts NONE at
position i t sPos is to make the new value of i t sSequence be (a) the substring from
position O up to i t sPos, followed by (b) NONE, followed by (c) the substring running
from position itsPos + 1 uptothe end. The last thing that t akeCD does is call the

t r ace method.

The upper part of Listing 5.4 (see next page) contains the Java coding for the
st ackHasCD method and the t akeCD method just described. The logic for the put CD
method is rather more complex; a reasonable plan is in the accompanying design block.

STRUCTURED NATURAL LANGUAGE DESIGN for putCD
1. Exit the program if there is no slot at the current position.
2. If the current slot does not have a CD and the stack does, then...
2a. Change i t sSequence to be a new string consisting of three parts:
(a) all its characters up to but not including the current position;
(b) the top value on the stack;
(c) all its characters after the current position.
2b. Remove the top value from the stack.
3. Print out a tracing message.

The implementation of put CDin the lower part of Listing 5.4 differs somewhat from the
design. The first thing the coding does is test ! seesCD(), which will exit the program
immediately if there is no slot at the current location. So Step 1 (testing seesSl ot ())
does not have to be coded explicitly.

5-13 Java Au Naturel by William C. Jones 5-13

Listing 5.4 The Vic class of objects, parts involving theStack

/1 public class Vic continued: using the stack
private static String theStack = ""; /[l initially enpty
public static bool ean stackHasCIX)

{ return theStack.length() > 0;
|

public void takeCD()
{ if (seesCX))
{ theStack = theStack
+ i tsSequence. substring (itsPos, itsPos + 1);
i tsSequence = itsSequence.substring (0, itsPos) + NONE
+ i tsSequence. substring (itsPos + 1,
i t sSequence. | ength());
}
trace ("takeCD at slot ");
|

public void putCD()
{ if (! seesCD() && stackHasCD())
{ int atEnd = theStack.length() - 1;
i tsSequence = itsSequence.substring (0, itsPos)
+ theStack. substring (atEnd, atEnd + 1)
+ i tsSequence. substring (itsPos + 1,
i t sSequence. | ength());
t heSt ack = theStack. substring (0, atEnd);

}
trace ("putCD at slot ");

1y,

The reset method

The value passed in to the r eset method has the type description St ri ng[], which
has not yet been discussed in this book. A full explanation of these array variables has to
wait until Chapter Seven, but the foretaste you get here should be manageable.

The Vic class has a class variable named t heTabl eau where it keeps what are initially
the three empty String values it allows. The type description of this variable is
String[], which means it can hold several String values. The class variable

t heTabl eau can be initialized to be three empty Strings with this coding:

private static String[] theTableau = { ", "", "" };

The r eset method simply assigns its ar gs parameter to this t heTabl eau variable,
replacing the current value of three empty Strings by however many non-empty Strings
the user gives as input in ar gs. However, in accordance with the specifications for
reset in Chapter Two, it does not make the assignment if ar gs has no strings at all or if
some Vic object has already been constructed.

The class variable t heNumVi cs keeps track of the number of Vic objects created so far.
This is done just as you saw for t heNunPer sons in the earlier Listing 5.2: Initialize it to
zero in the declaration, then increment it in the constructor. This variable is used to
determine the i t sl Dvalue for each Vic, and it is also used by the r eset method: If

t heNunVi cs is not zero, the r eset method has no effect.

5-14 Java Au Naturel by William C. Jones 5-14

Each object whose type is String[] has a public final instance variable named

| engt h that you can test to find out how many elements are in the array. So the r eset
method makes sure that ar gs. | engt h is positive before it replaces t heTabl eau by
ar gs. The full coding for the r eset method is therefore as follows:

public static void reset (String[] args)
{ if (theNunmVics == 0 && args.length > 0)
t heTabl eau = args;

The Vic constructor

We saved the hardest method for last. To help the constructor do its job, we have two
class variables: One is a random number generator and the other is a named constant
that contains the first 12 letters of the alphabet. These letters are at positions 1 through
12 of the LETTERS string, with the character at position 0O left blank. The value of

i t sPos will always be at least 1 for any Vic object. In effect, we switch to a one-based
numbering of characters in a String in spite of Java's preference for zero-based. You
should compare the following development of the constructor with its coding in Listing 5.5
(see next page), where each line of the method is numbered.

The first thing the Vic constructor does is create the object (line 1) and then check that

t heNunmVi cs is less than the number of strings in t heTabl eau (which will be three
unless they were replaced by the r eset method, in which case it could be dozens,
depending on the user's choice; see line 2). If t heNunVi cs is too large, we already
have all the objects we are allowed, so we do nothing but increment t heNunVi cs (line
13) seti t sl Dto that value (line 14), and print a tracing message (line 15). These three
actions are what we do at the end of the construction process for regular Vics too. So the
guestion is, what do we do if t heNunVi cs is not too large?

First we need to make i t sSequence equal to the corresponding array element (line 3).
That is done with the following statement (fully explained in Chapter Seven; we do not
say anything more about arrays here):

i tsSequence = theTabl eau[t heNunmVi cs] ;

If this is not the empty String, it must be the one that came from r eset , so we are done
with the construction process (except putting a blank on the front and doing the three
actions mentioned earlier). But if it is the empty String (line 4), we have a loop that
executes from 3 to 8 times (randomly chosen in line 5), each time adding a 1-character
string to the front of i t sSequence. The string it adds is NONE half the time (again
chosen at random; lines 6-7) and is otherwise the corresponding letter from the
LETTERS value (lines 8-10). For instance, an object with six slots and only the second
and fourth slots having no CD has " a0cOef " fori t sSequence. Then a blank is put on
front (to make it one-based; line 11) and the three actions mentioned earlier are done.

Caution Any time you work out a complex logic such as this, you need to go

over it very carefully to make sure that there are no errors. This Vic object

class crashed on its fourth test run because the constructor does not always

assign a value to i t sSequence. After this bug was found, the declaration

of i t sSequence was changed to initialize it to the empty String. The bug
was caused by a failure to obey a simple principle: Initialize every instance variable in its
declaration unless you are absolutely sure it is initialized in every constructor.

5-15 Java Au Naturel by William C. Jones 5-15

Listing 5.5 The Vic class of objects, completed

/1 public class Vic conpleted: constructor and reset

private static final java.util.Random randy
= new java. util.Random();

private static final String LETTERS = " abcdef ghij kIl ";
private static int theNunVics = 0;
private static String[] theTableau = {"", "", ""};

public static void reset (String[] args)
{ if (theNunVics == 0 && args.length > 0)
t heTabl eau = args;

|
public Vic()
{ super(); /1
if (theNumVi cs < theTabl eau. | engt h) [l 2
{ itsSequence = theTabl eau[theNunVics]; /1 3
if (itsSequence.length() == 0) /] 4
for (int k = 3 + randy.nextint (6); k >= 1; k--) // 5
if (randy.nextlnt (2) == 0) /1 6
i tsSequence = NONE + itsSequence; /7
el se /] 8
i tsSequence = LETTERS. substring (k, k + 1) // 9
+ it sSequence; /] 10
itsSequence = " " + itsSequence; /1 11
} [l 12
t heNumVi cs++; /] 13
itsID = theNunV cs; [l 14
trace ("constructed "); /] 15
|

Exercise 5.16 If the user calls the r eset method twice before any Vic is constructed,
what happens the second time?

Exercise 5.17 Modify the simulation by having each tracing statement begin with a list of
the elements in t heSt ack.

Exercise 5.18* Describe the consequence of reversing the order of indexing in the
constructorto have for (int k = 1; k <= 3 + theRandy. nextInt(6); k++).
Exercise 5.19* Describe the consequence of forgetting the phrase ! seesCD() &&

in the coding of put CD.

Exercise 5.20* Describe the consequence of forgetting the phrase && st ackHasCD()
in the coding of put CD.

5.6 Case Study: Introduction To Networks

This Network material presents a completely different software situation from the Vic
software, so you can see more examples of how to use the language elements you have
learned. No new language features are introduced in these three sections.

Some situations where networks arise

One relevant situation is the network of nodes on the World Wide Web. Each node can
send messages directly to several other nodes. A message can be routed from one node
to any other node by having it pass through several direct node-to-node connections
along the way.

5-16 Java Au Naturel by William C. Jones 5-16

Another relevant situation is a group of students who are registered for a group of
courses. Each student has registered for several courses and each course has several
students registered for it.

A third relevant situation is the set of airports served by a particular airline. Each airport
provides direct flights to only a few other airports. But one can get to any other airport
(hopefully) by taking a series of direct flights.

Networks and nodes

These situations have common elements you can model in software. A Network object
corresponds to the WWW or the college or the airline. Each Network object has a
(usually long) list of all the Node objects in the network. Nodes correspond to internet
nodes or students or courses or airports. Each Node object has a (relatively short) list of
other Node objects that it connects to. Figure 5.2 shows an example of a network and
gives the node-list for the entire network and for each node in it.

network's list: A, B,D,C

Aslist B, C
B'z list: D
C'slist D, &, B
D's list: &

¥ connects to v denoted by x =y

Figure 5.2 Example of a network with four nodes

"Node x connects to Node y" models any of these relations:

Internet Node x can send a message directly to Node y.
College Student x is registered for Course y.

College Course x has registered in it Student y.

The Airline has a direct flight from Airport x to Airport y.

The Network and Position classes
The only two methods for the Network class are as follows:

net = new Networ k() constructs a Network object that represents an actual
network. In other words, it creates a virtual network. Each use of this constructor
normally gives a different network.

net . nodes() produces the list of Nodes in the Network object net , starting with
the first node.

The nodes method is the key method. It produces a new Position object. That Position
object iterates through the list of all the Nodes in the Network one at a time. If you get a
Position object from a Network net using e.g. Posi ti on pos = net.nodes(), you
can use the following three instance methods:

pos. moveOn() changes the position of pos to the next Node on the list of nodes
(like Vic's nove(On).

pos. hasNext () tells whether there is a Node at the current position of pos inits
list (like Vic's seesSl| ot).

pos. get Next () returns the Node object at the current position of pos in its list
(not like Vic's t akeCD, since get Next does not remove or change the Node at the
position, it only lets you look at it).

5-17 Java Au Naturel by William C. Jones 5-17

The application program in Listing 5.6 illustrates all of these commands, as well as one
for Node objects: current. get Nanme() returns the name of the node referred to by
current . This coding also illustrates the basic counting logic: If you initialize a variable
to zero and increment it once each time through a loop, then when you exit the loop that
variable will contain the number of iterations of the loop.

Listing 5.6 A program using a Network object

i mport javax.sw ng. JOpti onPane;

public class Net App
{

/** List all nodes and tell how many there are. */

public static void main (String[] args)
{ Network school = new Network();
int count = O;
for (Position pos = school.nodes(); pos.hasNext();
pos. moveOn())
{ Node current = pos.getNext();
JOpt i onPane. showessageDi al og (nul |,
current.getNanme() + " is one of the nodes.");
count ++;
}
JOpt i onPane. showMessageDi al og (nul |,
"The total nunber of nodes is
Systemexit (0);
|

+ count);

When a program executes, it almost always processes input and produces output.
Typically, the output is the answer to a problem the program solves. For a Vic object, the
input is the initial state of the mechanical components and the output is the final state of
the mechanical components. For a Network object, the input is the initial state of the list
of Nodes and their connections; the output is whatever you display for the user to see.

The Node class

The pos. get Next () method call produces a Node object, one of the Nodes in the
Network. You can do several things with Nodes. For instance, some network situations
involve two distinct groups of Nodes, as with colleges and students. Or they might
represent people, some of whom are male and some female. To have a general model
for such cases, we say some nodes are blue and some not.

For the college situation, blue nodes might represent students and non-blue nodes
courses. Or for people, blue nodes might represent males and non-blue nodes females.
For airports, we indicate that color does not matter by having all nodes blue. The method
call sam i sBl ue() teststhe Node object that samrefers to to see if it is blue. The
logic in Listing 5.6 could be modified to count the blue nodes and print the name of each
by replacing the body of the for-statement by the following:

Node current = pos. get Next();
if (current.isBlue())
{ JOptionPane. showessageDi al og (null,
current.getNane() + " is a blue node.");
count ++;

5-18 Java Au Naturel by William C. Jones 5-18

You cannot change the state of a Network. But you can go down the list of nodes a given
node connects to to find out things about those connections, as you will see next. The
methods for Networks, Nodes, and Positions provide some very useful services for
answering questions about a network.

The four Node methods

You have already seen two instance methods for Nodes. We introduce here two new
ones, so you now have four altogether:

aNode. get Nanme() returns a String representation of the Node.

aNode. i sBl ue() tells whether aNode belongs to one of two categories of Nodes.
aNode. equal s(anot her Node) tells whether two (possibly different) Node objects
represent the same Node in the network, analogous to String equal s.

aNode. nodes() returns a Position object that iterates through the list of all Nodes
that aNode connects to in the network.

A software suite to track water flow through the pipes of a municipal system would
involve network operations. Figure 5.3 shows a network of water pipe connections. The
arrows indicate the direction of flow through the pipes. If pi pes refers to the Network
here, the list that pi pes. nodes() produces has all eight nodes of the network on it.
However, the list that x. nodes() produces for various node values x has at most two
nodes on it. For instance, as the figure implies, E. nodes() produces a Position object
pos for which pos. get Next () isH, and pos. moveOn(); pos.getNext() isF.

netweork's list: & B,C0EF 3 H

['= list: E
Alslist: B, C E's list H, F
B'z list: G F'z list D
Czlist D, G o'z list H
H's list:

Figure 5.3 A network with 8 nodes

You might get two different descriptions of the same node when you use the get Next
method. For instance, if bee and cee are Node variables that refer to nodes B and C in
Figure 5.3, then Node x = bee. nodes().getNext() and Node y =

cee. nodes(). get Next () may both give you an object that refers to node G, but they
may be different objects (i.e., stored in different places in RAM, so x ==y isfal se).
However, x. equal s(y) will be true since they both represent node G.

A utilities class for Nodes

No constructor has been specified for Positions or Nodes, so you cannot make a
subclass that gives additional abilities to Positions or Nodes. But you can create a
NodeOp class to hold various class methods that deal with Nodes. These methods are
declared using the word st at i ¢, meaning you call them with the class name in place of
the executor. Listing 5.7 (see next page) is a start on this utilities class.

The seesOnlyBlue method
An example of the use of a NodeOp method is the following statement:

i f (NodeQp.seesOnl yBlue (sam)
JOpt i onPane. showMessageDi al og (null, "only blue nodes");

5-19 Java Au Naturel by William C. Jones 5-19

Listing 5.7 The NodeOp class

/[** Answer queries about one or two given nodes. */

public class NodeOp
{

[** Tell whether par connects only to bl ue nodes. */

public static bool ean seesOnl yBl ue (Node par)
{ for (Position p = par.nodes(); p.hasNext(); p.nmoveOn())
if (! p.getNext().isBlue())
return false;
return true;
|

[** Tell whether from connects to target. */

public static bool ean connected (Node from Node target)
{ for (Position p = fromnodes(); p.hasNext(); p.mveOn())
if (p.-getNext().equals (target))
return true;
return false;
|

/** Tell whether par connects to any node of the sanme color.*/

public static bool ean seesSaneCol or (Node par)
{ return (par.isBlue() & ! seesOnl yNonBl ue (par))
|| (! par.isBlue() & ! seesOnl yBl ue (par));

|
/[** Tell whether par connects to no bl ue node. */

public static bool ean seesOnl yNonBl ue (Node par)
{} /I left as exercise

The purpose of the seesOnl yBl ue(Node) class method in Listing 5.7 is to tell whether
the parameter par connects to nothing but blue nodes. A good design is: You run down
the list of nodes par connects to. If you see a node that is not blue, the answer to the
guestion, "Does par connect only to blue nodes?" is f al se. If you get to the end of the
list without seeing a non-blue node, the answer to the questionist r ue.

The method call p. get Next () returns a Node value, and the executor of the i sBI ue
method must be a Node value. Therefore, p. get Next ().i sBl ue() is alegal chain
of method calls that asks whether the Node returned by p. get Next () is blue.

The connected method

The purpose of the connect ed(Node, Node) class method is to tell whether the first
parameter f r omconnects to the second parameter t ar get . A good design is: You run
down the list of nodes f r omconnects to. If you see the t ar get node, the answer to the
guestion "Does f r omconnect to t ar get ?"ist r ue. If you get to the end of the list
without seeing the t ar get node, the answer to the question is f al se.

5-20 Java Au Naturel by William C. Jones 5-20

Note that these two methods have almost exactly the same structure, except the t r ue
and f al se values are switched. You will see these two looping patterns very frequently.
The first is typical of All-A-are-B conditions (specifically, "All nodes connected to par are
blue"), so we call it the All-A-are-B looping action. The second is typical of Some-A-
are-B conditions (specifically, "Some node connected to f r omequals t ar get "), so we
call it the Some-A-are-B looping action.

The seesSameColor method

The purpose of the seesSanmeCol or (Node) method is to tell whether some node the
parameter connects to is the same color as the parameter. It is logical that a node is
connected to another node of the same color if and only if it is blue but not connected
only to non-blues, or it is non-blue but not connected only to blues.

All three of the methods in Listing 5.7 are query methods because, after the executor
returns t r ue or f al se from the method call, every object is in the same state it had
when you made the call. You may protest that the object obtained by the statement p =
par . nodes() has changed, and you would be right. But that object is irrelevant, since:

1. That object did not exist when you called the method,

2. That object cannot be used after you return from the method, and

3. The fact that it was created and modified has no effect on anything after you return
from the method. This is because each future call of nodes() get a totally new
Position object.

Exercise 5.21 Write a main method that only prints out the name of the last blue node,
but prints "no blues" if there are none.

Exercise 5.22 Write the method seesOnl yNonBI ue described in Listing 5.7.
Exercise 5.23 Write a method publ i ¢ static int get NumNodes (Node par) for
NodeOp: It tells how many nodes its Node parameter connects to.

Exercise 5.24 Write a method publ i c static int bidirectional (Node par)
for NodeOp: It tells whether every Node par connects to, connects to par .

Exercise 5.25* Revise Listing 5.6 to print the percentage of nodes that are blue.
Exercise 5.26* Draw the UML class diagram for Listing 5.6.

Exercise 5.27* Write a method public static int hasA (Node par) for
NodeOp: It tells whether the name of any Node that par connects to begins with "A".

5.7 Extending The Network Class

The SmartNet class in Listing 5.8 (see next page) augments the Network class by adding
three useful methods. To use this class, you need only start your program with a
command such as Smart Net net = new Smart Net (). Figure 5.4 shows the UML
class diagram for the SmartNet class.

The purpose of the connect sToAl | (Node) method is to tell whether the Node
parameter connects to every other node. The executor looks through the list of all nodes
in the network until it sees one the given node does not connect to, then returns f al se.
It returns t r ue only when the given node connects to every other node. So this is
another All-A-are-B looping action.

The purpose of the get NunNodes() method is to tell how many nodes are in the whole
network. The executor initializes a counter to zero. Then it goes through the list of all
nodes in the network and adds 1 to the counter each time it sees a node. So the final
answer must be the number of nodes in the whole network.

5-21 Java Au Naturel by William C. Jones 5-21

Listing 5.8 The SmartNet class

i mport javax.sw ng. JOpti onPane;

public class Smart Net extends Network

{
[** Tell whether par connects to all other nodes in this
* network. */
publ i c bool ean connect sToAl |l (Node par)
{ for (Position pos = nodes(); pos.hasNext(); pos.noveOn())
{ Node current = pos.getNext();
if (! (current.equals (par)
| | NodeOp. connected (current, par)))
return fal se;
}
return true
Y 1
/** Return the total nunber of nodes in this network. */
public int get NumNodes()
{ int count = O;
for (Position pos = nodes(); pos.hasNext(); pos.mveOn())
count ++;
return count;
Y 1
/[** List all nodes in this network that connect to
* some node of the same color. */
public void printSameCol or Connecti ons()
{ for (Position pos = nodes(); pos.hasNext(); pos.noveOn())
{ Node current = pos.getNext();
i f (NodeQp. seesSaneCol or (current))
JOpt i onPane. showMessageDi al og (nul |
current . get Name());
}
Y 1
}
Pletweark
nodes 1 Position _ Pasition
JoptionPane
Z‘L hashext(1: boolean
: o >shDWMessageDialng(j gethlesdr 10 hode
smarthidet 00| T > moveon)
mee(C3 }},qnde
connectsToAll (N.c!dej: boalean | > Nodep
ggtNumNndes(1z it . equals (Mode) ; haolean
printSameColorConnectionsl) connected (Mode, Mode) gethlamel) : String
seesSameColar (Mode)

Figure 5.4 UML class diagram for the SmartNet class

5-22 Java Au Naturel by William C. Jones 5-22

The pri nt SaneCol or Connect i ons() method is used in a situation where you expect
every node to connect to a node of a different color, such as students registered for
courses. But you want to make sure this is true. The executor looks through the list of all
nodes in the network to find those that are connected to a node of the same color (i.e., a
blue node connected to a blue node or a non-blue node connected to a non-blue node).
It prints all such nodes it sees.

You may wonder why this subclass of Network is called SmartNet. If you have a friend to
whom you teach Spanish, is your friend still the same person? Answer: Yes, but a
smarter person, since now your friend can speak Spanish. Similarly, making net = new
Smart Net () instead of net = new Net wor k() would produce the same network of
nodes, but that network would be able to answer the question, "Does this particular Node
connect to all other Nodes?", which a plain Network cannot answer. That is, SmartNet
objects are smarter than plain Network objects.

Exercise 5.28 Rewrite the condition in SmartNet's connect sToAl | method to use &&
rather than || .

Exercise 5.29 Write a SmartNet method publ i ¢ bool ean noLoners(): The
executor tells whether each of its nodes is connected to at least one node.

Exercise 5.30 Write a SmartNet method publ i ¢ bool ean at Least OneNonBl ue():
The executor tells whether at least one of its nodes is not blue.

Exercise 5.31* Write a SmartNet method publ i ¢ bool ean isBipartite(): The
executor tells whether every node connects only to nodes of the opposite color. Call on
an existing NodeOp method to do most of the work.

Exercise 5.32* Write a SmartNet method publ i ¢ bool ean nunBl ues(): The
executor tells how many blue nodes it has.

Exercise 5.33* Write a SmartNet method publ i ¢ bool ean hasUni ver sal Node():
Tell whether any node is connected to every node except possibly itself.

Exercise 5.34* Rewrite the SmartNet class so that i t sSNumNodes is an instance
variable and get NunNodes returns its value rather than re-calculating it each time it is
called.

Exercise 5.35* Draw the UML diagram for the SmartNet class.

Exercise 5.36** Write a SmartNet method publ i ¢ bool ean tel |l First (Node
one, Node two): Tell which of the two given nodes comes first on the list of all
network nodes. Return nul | if neither is on the list.

5.8 Analysis And Design Example: The Reachability Problem

Marking nodes with numbers

Each Node has a color (blue or not) and a name; you cannot change them. But each
Node also has an integer value you can change. This value is used to mark Nodes you
have processed during execution of an algorithm, so you do not process them again.

X. set Mark(5) sets Node x's marker number to 5 (you can use any int value
here). The marker number is initially zero for all Nodes when the Network is created.
X. get Mar k() returns the current value of x's marker number.

The Reachability Problem

An important problem in the study of networks is to find out whether it is possible to send
a message from a given starting point to every other node. The message can be routed
through as many other nodes as is necessary, as long as it gets through eventually. For
the Airline situation, the problem amounts to finding out whether the airline can get you to
any airport from a given airport starting point, clearly a desirable quality in an airline.

5-23 Java Au Naturel by William C. Jones 5-23

This is the Reachability Problem. The set Mar k and get Mar k methods are intended to
help solve this problem and many others. They are used to solve the Traveling
Salesman Problem in the optional Section 5.9 on recursion.

Solution to the Reachability Problem

Solving the problem of whether all nodes are reachable from a given node is rather
complex, so you need a plan. A first approach is as follows: Mark 1 on every node you
can reach from the starting point. Then mark 1 on every node you can reach from one of
those you marked. Then mark 1 on every node you can reach from one of those, etc.
When you cannot mark any more, see if every node in the network has been marked.

How do you keep track of each node you have checked out (that is, you have marked the
nodes you can reach from it)? You can use a different mark, say 2 instead of 1. So 1
means it is reachable but you have not yet checked out which nodes you can reach from
it, and 2 means it is both reachable and checked out. This design can be refined as
shown in the accompanying design block. Figure 5.5 traces the first few steps of this
algorithm.

netweork's list: &,8,CDEF,GH

After Step 2
with C as the Azlist B C
given node B'slist G
C'zlist D, G
'z list: F
E's list: |
F'z list: H, E
After processing 'z list: H
D in Step 3a H's list:
I's list: D

After processing
F in Step 3a

After processing
G in Step 3a

10
RN
Figure 5.5 Steps in the Reachability algorithm

How do you know when to repeat Step 3? Since this is a yes-no question, you could use
a boolean variable. Set it f al se at the beginning of Step 3, then setitt r ue if you find a
node marked 1 at Step 3a. Repeat Step 3 if you find the boolean variable has turned

t r ue after going through the list of nodes. Listing 5.9 contains the complete logic.

5-24 Java Au Naturel by William C. Jones 5-24

STRUCTURED NATURAL LANGUAGE DESIGN for the searching method

1. Mark 2 on the given node (since you are about to check it out).

2. Mark 1 on every node you can reach from the given node.

3. For each node current in the list of nodes of the network, do...

3a. If current is marked 1 (reachable but not yet checked out), then...
3aa. Mark 2 on current (since you are about to check cur rent out).
3ab. Mark 1 on every node you can reach from current unless it
already has a mark of 1 or 2.
4. Repeat Step 3 until you find no more nodes marked 1.
5. Returnt r ue if no nodes are marked O; return f al se otherwise
(since a 0 means it cannot be reached from the original node).

Listing 5.9 A SmartNet method for the Reachability Problem

/[** Tell whether every node is reachable fromthe given node.
* Precondition: source is not null. */

publ i c bool ean al | Reachabl eFrom (Node source)
{ checkQut (source); // marks 2 on source, 1 on sone others
bool ean foundNodeToCheckQut ;
do
{ foundNodeToCheckQut = fal se;
for (Position pos= nodes(); pos.hasNext(); pos.nmveOn())
{ Node current = pos.getNext();
if (current.getMark() == 1)
{ foundNodeToCheckQut = true;
checkQut (current);
}

}
}whil e (f oundNodeToCheckQut);
return al |l NodesAr eMar ked() ;
|

/[** Mark 2 on par; mark 1 on all nodes reachabl e from par
* except for those already marked 1 or 2. */

private static void checkQut (Node par)
{ par.setMark (2);
for (Position p = par.nodes(); p.hasNext(); p.noveOn())
{ Node current = p.getNext();
if (current.getMark() == 0)
current.setMark (1);

}
y o1

privat e bool ean al | NodesAr eMar ked()
{ bool ean val ueToReturn = true;
for (Position pos = nodes(); pos.hasNext(); pos.mveOn())
i f (pos.getNext().getMark() == 0)
val ueToReturn = fal se;
el se
pos. get Next ().setMark (0);
return val ueToRet urn;
|

5-25 Java Au Naturel by William C. Jones 5-25

Step 2 requires more than one or two statements to implement, so it is done as a call to a
separate private helper method hamed checkQut which includes Step 1. Step 3ab uses
the same method. Step 5 also requires more than one or two statements, so it has a
separate method too, named al | NodesAr eMar ked. Note: Listing 5.9 is rewritten in a
much more efficient way in Section 5.9.

method instead of an instance method. The reason is, the Network object itself
is not used at all (no explicit or implicit t hi s). It would be deceptive to make it
an instance method, and deception is not good style.

Q Programming Style You may well ask why the checkQut method is a class

Implementing the Network class with a prototype

You are probably wondering why you do not get any Network software with which to test
your programs, analogous to the Vic software. The reason is simple: This is a major
programming project at the end of Chapter Seven (when you have learned about arrays).

For now, you can use the three classes in this section. They have overly simple logic,
they are not adequate for realistic use of networks, and parts of the Node class are left as
exercises. However, they are sufficient to allow you to test the methods you write. Study
them carefully to reinforce your understanding of instance variables and integers.

A standard technique in software development is to develop a prototype of a system that
sort of fakes the functionality of the real thing, for purposes of seeing how it looks and
feels. Then you toss it when you write the real thing. These three classes are examples
of such prototypes.

The Position methods

In this prototype implementation, a Position object keeps track of the id number of the
Node at its current position in its list. When you call get Next , it returns a Node object
with that id. The Node returned will be equal to any other Node object with the same id,
because the equal s method returns t r ue if and only if the executor Node has the same
id number as the parameter Node. Nodes are number from 0 to 99 inclusive, and

i t sCurrent may be greater than 99, so calculating the current node's number may
require subtracting 100.

A Position object also keeps track of the id number of the last node in its list of nodes, so
it knows when it has gone to far. So get Next returns nul | when its current node id is
beyond its last node id, and hasNext simply verifies that its current node is not beyond
its last node. The noveOn method adds 1 to the id number for its current node. These
methods are coded in Listing 5.10. Listing 5.11 provides the corresponding definition of
the other two classes.

Exercise 5.37 Rewrite the al | Reachabl eFr ommethod to have just one statement
subordinate to the for-loop, an if-statement, and thus not have braces around it.
Exercise 5.38 Continue the trace of the algorithm in Figure 5.5 for two more executions
of Step 3a.

Exercise 5.39 Write the i sBl ue Node method (an odd i t s| Dmeans it is blue) and the
get Name Node method (every Node is named "Darryl") for Listing 5.11.

Exercise 5.40 Write the set Mar k and get Mar k Node methods for Listing 5.11. Add an
extra instance variable named i t sMar k to do this.

Exercise 5.41 In the Node class of Listing 5.11, which Nodes does Node #6 connect to?
Node #42? Node #977?

Exercise 5.42* Revise Listings 5.10 and 5.11 so each Node connects to five other
Nodes of the opposite color (an odd i t s| D means it is blue). Hint: Have #18 connect to
#19, #21, #23, #25, #27.

5-26 Java Au Naturel by William C. Jones 5-26

Listing 5.10 Prototype Position class of objects

public class Position extends (bject

{

private int itsCurrent; // Node at current position on |ist
private int itsLast; /1 Node at |ast position on list
public Position (int first, int |ast)
{ super();

itsCurrent = first;

itsLast = | ast;
|
publ i c Node get Next ()
{ if (itsCurrent > itslLast)

return null;
el se
return new Node (itsCurrent % Networ k. NUM NCDES) ;
|
publ i ¢ bool ean hasNext ()
{ return itsCurrent <= itslLast;
|
public void moveOn()
{ itsCurrent ++;
|
}

Listing 5.11 Prototype Network and Node classes of objects

public class Network extends Object

{
public static final int NUM NODES = 100;
(LI rrirrirririrrrirrri

public Position nodes()
{ return new Position (0, NUM NODES - 1);
|

}
| | #HBHHHBHHHBHHH B H B H B H B H R H R R R R R R R R R

public class Node extends Object

{
private int itslD /1 ranges fromO to NUM NCDES - 1

public Node (int index)
{ super();

itslD = index;
|

public Position nodes()
{ return new Position (itsID + 1, itsID + 4);
|

publ i c bool ean equal s (Node par)
{ return this.itsID == par.itslD
|

5-27 Java Au Naturel by William C. Jones 5-27

5.9 Recursion (*Enrichment)

The following method definition is at the beginning of Chapter Three. It uses a while-
statement to put a CD in each slot of the executor's sequence of slots, by moving one
slot forward each time until there are no more slots to fill:

public void fillSlots()
{ while (seesSlot())

{ putCX();
moveOn() ;
}
} | | =======================

When you think about what a while-statement means, you can see this is the same logic
as the following. Of course, that last line is a comment instead of a Java statement, so
the effect is not the same. But it describes what the while-statement does.

public void fillSlots()
{ if (seesSlot())

{ putCX);
moveOn() ;
/1 repeat this if-statenent
}
} | | =======================

This logic can be expressed a third way. The comment has been replaced by a call of
the method that contains the if-statement. This is called recursion.

public void fillSlots()
{ if (seesSlot())

{ putCX);
moveOn() ;
fillSlots(); [// i.e., repeat this if-statenent
}
} | | =======================

Execution does not go on forever for any of these logics. For each of them, the executor
moves one slot forward each time through the loop. Eventually it comes to the end of the
sequence. Thenthe seesSl ot () conditionis f al se and execution stops.

Recursive version of fillSlots(int)

Consider this task: We want to fill in the first four slots in a sequence, or the first six slots
or whatever is specified in a variable numToFi | | . Afterward we want to back up to the
starting position. But if there are less than nuniToFi | | in the sequence, we just fill in all
there are and then back up to the original position.

That logic can be written fairly clearly using recursion: When numToFi | | is positive and
you see a slot, then you can fill numrloFi I | slots if you (a) put a CD in the first slot, then
(b) move on, then (c) fill numloFi I | -1 slots, then (d) back up by one slot. The
following is a line-for-line translation of this logic:

5-28 Java Au Naturel by William C. Jones 5-28

public void fillSlots (int numloFill)
{ if (seesSlot() && nuniloFill > 0)

{ putCX); 11 (a)
moven() ; /1 (b)
fillSlots (numloFill - 1); /1 (c)
backUp() ; 11 (d)

}

} | | == =====================

The recursive logic makes it unnecessary to keep track of the starting position in the
sequence. The next-to-last statement in the method just means: Repeat this if-
statement but with nunToFi | | having a value 1 less than the previous time.

Recursive version of getNumSlots()

The get Nunfl ot s method in Section 4.5 had the executor move down its sequence,
adding 1 to a counter for each slot it saw. When it came to the end, it backed up to the
starting point (because it is a query method) and then returned the final value of the
counter. A recursive solution to the request to count your slots and report how many you
have is to (a) report zero if you have no slots, otherwise (b) move on to the next slot and
count how many there are from that point on, then (c) back up one slot and report 1 more
than you found in step (b). The coding is as follows:

public int getNunSlots()

{ if (! seesSlot()) /1 (a)
return O; /1 (a)
noveOn() ; /1 (b)
i nt num = get Nunfsl ot s(); /1 (Db)
backUp(); /1 (c)
return 1 + num /1 (c)

} | | =======================

Figure 5.6 should give you some idea of how recursion works for the method call

sam get Nunt| ot s() with two slots left in sami s sequence. The key is, each method
call has the runtime system create a new Method object to carry out the process given by
the method definition. Think of it this way: The method definition for get Nuntl ot s is a
college course that Method objects can take to learn how to do something. Calling the
method when samhas two slots left has the runtime system create a graduate of that
course, labeled #1 in the figure, who is to carry out the process studied in the course.

Part of the process Method object #1 carries out is a method call that creates a totally
different graduate of the course, labeled #2 in the figure, to carry out that same process
when the sequence has one slot. Part of the process Method object #2 carries out is a
method call that creates a third graduate of the course, labeled #3 in the figure, to carry
out the same process when the sequence has no slots. So #3 returns 0 to #2, who
stores 0 in his own variable num thus returns 1 to #1, who stores the 1 in his own totally
separate variable num and thus returns 2 to the point where it was originally called.

i " ra " ' ™
— sam.gethumSlatz) #1 sam gethlumSlots)) #2 zam.gethum=lotz #3

it (| seesSlat()) I:EEI if (| sEEsSlat() I:I:Iﬁ if 1 =eessioty (L1

return O; return 0; return O;

moveoni), mawe N, maveoni;

irt num = getMumSlats); it num = gethumzlots; i irt num = gethumSlats);

backUp(); hackUp(; backUp!,

{eturn 1+ num; Leturn 1 + num; kreturn 1+ num;

%_______JQ I

Figure 5.6 Call of getNumSlots with two additional recursive calls

5-29 Java Au Naturel by William C. Jones 5-29

People new to recursion sometimes ask, "How can a method call itself?" The answer is,
"That doesn't happen; what happens is, one Method object calls a totally different Method
object that graduated from the same course."

Turing Machine programs, as described at the end of Chapter Three, conventionally use
recursion to the exclusion of while-statements. With recursion, methods in a subclass of
the Tum class can always be coded as a single multi-selection statement.

Recursion applied to Networks

The al | Reachabl eFr ommethod in the earlier Listing 5.9 for Networks is much easier
and much more efficient when you use recursion. You can eliminate all but the first and
last statements of the al | Reachabl eFr ommethod if you just replace one statement in
the checkQut method, as shown in Listing 5.12. Specifically, checking out a node par
consists in marking it 2, then checking out every node marked 0 you can reach directly
from par . In effect, to mark all the nodes you can reach from par , you first mark par and
then you simply mark all the nodes you can reach from a node you can reach from par .

Listing 5.12 Recursive allReachableFrom method in SmartNet

/** Rewite of SmartNet's all Reachabl eFrom for efficiency. */

publ i c bool ean al | Reachabl eFrom (Node source)
{ checkQut (source);
[/ all of these |lines have been del eted
return al |l NodesAr eMar ked() ;
|

private static void checkQut (Node par)
{ par.setMark (2);
for (Position p = par.nodes(); p.hasNext(); p.noveOn())
{ Node current = p.getNext();
if (current.getMark() == 0)
checkQut (current); // this is the only |ine changed

The Traveling Salesman Problem for a network of airports is to answer the question of
whether you can visit every airport without going through the same airport twice, starting
from a given airport. A general solution can be obtained by calling canTr avel From
(gi venAirport, getNumNodes()) forthe canTr avel Fr ommethod in Listing 5.13.
This method is based on the logic in the accompanying design block.

5-30 Java Au Naturel by William C. Jones 5-30

Question: Can one travel through n different nodes marked zero starting from base?
Answer: If n is1,then...
Of course it is possible, since base itself is the one.
Otherwise...
Mark 1 on base.
If there is any node such that
(a) you can reach it from base in one direct step, and
(b) it is marked zero, and
(c) you can travel through n- 1 different nodes marked zero
starting with it, then...
It is obviously possible.
Otherwise...
It is not possible.

Listing 5.13 Recursive NodeOp method for the Traveling Salesman

/[** Tell whether it is possible to travel through n nodes,
* all different and all marked 0, starting from Node base.
* Precondition: base is marked 0. */

public static bool ean canTravel From (Node base, int n)
{ if (n<=1)
return true;
base. set Mark (1);
for (Position p = base.nodes(); p.hasNext(); p.nmoveOn())
{ Node current = p.getNext();
if (current.gethMark() ==
&& canTravel From (current, n - 1))
{ base.setMark (0); /] restore original state
return true;

}
}
base. set Mark (0); /] restore original state
return false;
|
L anguage elements

A method can call any method in its class, even itself.

Exercise 5.43 Rewrite the fil | Sl ot s method in Listing 3.4 recursively, where the
executor returns to its original position.

Exercise 5.44 Rewrite the seesAl | Fi | | ed method in Listing 3.5 recursively.
Exercise 5.45* Rewrite the cl ear S| ot sToSt ack method in Listing 3.4 recursively.
Exercise 5.46* Rewrite the hasAsMany Sl ot sAs method in Listing 3.6 recursively.
Exercise 5.47** Rewrite the | ast Enpt ySl ot method in Listing 3.8 recursively.
Exercise 5.48** Write a recursive method publ i ¢ bool ean canFil | Al'l Sl ot s()
for a subclass of Vic: The executor tells whether there are enough CDs in the stack to fill
all of its empty slots. When the method terminates, the executor must be in the same
state it was in when the method began. Note that a non-recursive solution is too hard.

5-31 Java Au Naturel by William C. Jones 5-31

5.10 More On JOptionPane (*Sun Library)

This section describes methods from the j avax. swi ng. JOpt i onPane class that can
be quite useful for major projects or in later courses, though they are not mentioned
elsewhere in this book. Look at your documentation to see additional possibilities (a
folder named something like j dk1. 3\ docs\ api\j avax\ swi ng\ JOpt i onPane. ht m
on your hard disk).

The showMessageDi al og method call has the following more general form:

showMessageDi al og (null, soneMessage, "title at the top",
JOpt i onPane. sonel nt Nane)

The first parameter is a Component value; if it is not nul | , the dialog is displayed in the
frame for that Component object and usually positioned directly below the Component.

The second parameter someMessage is typically a String to be displayed, on several
lines if it includes the newline character '\ n' . However, the parameter type is specified
as Object, so you may make it any of several kinds of displayable objects.

The third parameter is a String value to replace the default title "Confirm". For the fourth
parameter, replace somrel nt Name by one of the following to specify the icon:

PLAIN_MESSAGE (no icon at all)

ERROR_MESSAGE (a horizontal bar inside an octagon)
WARNING_MESSAGE (an "!" inside a triangle)

QUESTION_MESSAGE (a "?" inside a rectangle)
INFORMATION_MESSAGE (an "i" inside a circle, which is the default icon)

The showl nput Di al og method call has the default title "Input”, the "?" icon, and two
buttons saying "OK" and "Cancel". It is also overloaded with a four-parameter version
having the same four parameters with the same meaning as for showessageDi al og.

The showConf i r nDi al og can return any of several int values to tell what button the
user clicked: YES_OPTION, NO_OPTION, OK_OPTION, CANCEL_OPTION, and
CLOSED_OPTION (meaning that the user clicked the X-shaped closer icon in the top
right of the window). The name showConf i r nDi al og is also overloaded; the more
general form of it has two variants:

showConfirnDi al og (null, messageString, titleString,
JOpti onPane. YES_NO_OPTI ON)

showConfirnDi al og (null, messageString, titleString,
JOpti onPane. YES_NO CANCEL_CPTI ON)

The first three parameters are as for showMessageDi al og (the default title here is
"Select an option"). The fourth parameter names an int value that specifies what buttons
(either two or three of them) are displayed for the user to click. The default option (when
only the first two parameters are used) is the YES_NO_CANCEL_OPTION.

5-32 Java Au Naturel by William C. Jones 5-32

5.11 Review Of Chapter Five

Listing 5.2 and Listing 5.3 illustrate almost all Java language features introduced in this
chapter other than recursion.

About the Java language:

» You may call a class method (declared using st at i ¢) with the name of its class in
place of the executor. By contrast, an instance method requires a reference to an
object of the class as the executor.

» Youcan uset hi s inside an instance method as a reference to the executor of the
method call. By contrast, a class method does not have an executor, so you cannot
use t hi s inside a class method.

» If you call a method without an executor and without a class name in place of the
executor, the compiler uses the default. For calling a class method, the default is the
class containing the method call. For calling an instance method, the default is
t hi s of the method containing the method call (i.e., itis t hi s instance of the
class).

» You may declare a variable in a class outside of any method, which makes it a field
variable. Then each object of the class has its own value for the variable if it is an
instance variable. But there is only one value for the whole class if it is a class
variable (i.e., declared with the st ati ¢ modifier).

» If the declaration of a field variable assigns it a value, that takes effect for an object's
instance variable when the constructor is called, for a class variable when the
program begins. The runtime system supplies a default value if you do not: zero or
nul | orfal se, as appropriate.

» The word final is allowed in any kind of variable declaration. It means that the first
assignment of a value to that variable is the last one.

» If a method call returns an object, it can be used as the executor of another method
call. This is a cascading or chaining of method calls.

» soneString. | ength() returnsthe number of characters in the sonmeStri ng.

» soneString.substring(startlint, endlnt) returns the substring of
someSt ri ng running from position st ar t | nt to just before position endl nt .
Numbering is zero-based (starts from zero). You musthave 0 <= startlnt <=
endl nt <= soneString. | ength()

» In the grammar summary of Figure 5.7, the Type is int, boolean, or a ClassName;
Par anmet er Li st is one or more Type Vari abl eNanme combinations separated
by commas, with no assignments to those parameters; and the Modi fi er is either
publ i c or privat e. lItalicized words are optional elements.

Modi fier static final declaration of class variable with
Type Vari abl eName = Expression; initial value
Modi fier static Type Met hodNane declaration of class method that
(ParanmeterList) { StatenmentGoup } | accepts input initially assigned to
Modi fier static void Met hodNane its formal parameters
(ParaneterList) { Statement G oup }

Figure 5.7 Declarations added in Chapter Five

5-33 Java Au Naturel by William C. Jones 5-33

Other vocabulary to remember:

>

If a class does not have any instance methods or instance variables or main method,
we call it an utilities class. If it has instance methods or instance variables and no
main method, we call it an object class. The only other kind of class we use in this
book is a class that has a main method and no other method, called an application
program. A class method is independent if it could be in any class.

String values are immutable, i.e., the attributes of these objects cannot be changed.

Answers to Selected Exercises

51
5.2
5.3

5.7

5.8

5.11

5.14

5.16

5.17
5.21

5.22
5.23

Insert before the first if: if (count == 0) return O;
Insert before the for-statement: if (expo > 30) expo = 30;
public static int power (int base, int expo)
{ if (base <=0 || expo < 0)
return O;
int limit = 2147483647 / base;
int power = 1;
for (; expo > 0 && power <= limit; expo--)
power = power * base;
if (expo ==0)
return power;
else
return -1;
}
Put this outside of any method: private static String theLatestName = "none so far";
Put this statement at the end of the coding for the constructor: theLatestName = itsFirstName;
Add this method to the Person class:
public static int getNameOfLatestCreated()
{ return theLatestName;

java.util.Random randy = new java.util. Random();
public static int range (int one, int two)
{ if (one <= two)
return one + randy.nextint (two - one + 1);
else
return two + randy.nextint (one - two + 1);
}
Put this declaration as the first statement of toString: final int BASE = 10;
Replace the phrase "itsHour < 10" by "itsHour < BASE".
private static char getSub (String sequence, int position)
{ return sequence.substring (position, position + 1);
}
Replace the following four parts of Listings 5.3-5.5:
return ! getSub (itsSequence, itsPos).equals (NONE); // last 2 statements of seesCD
theStack = theStack + getSub (itsSequence, itsPos); // statement in takeCD
+ getSub (itsStack, atEnd) // fourth line of the body of putCD
itsSequence = getSub (LETTERS, k) + itsSequence; // in the constructor
The new set of strings replaces the old set of strings provided by the previous call of reset.
This is no actual change in values, assuming that the same args was used each time.
Replace "Vic# " in the trace method by theStack + "; Vic# ".
public static void main (String[] args)
{ Network airline = new Network();
String lastBlue = "no blues";
for (Position pos = airline.nodes(); pos.hasNext(); pos.moveOn())
if (pos.getNext().isBlue())
lastBlue = pos.getNext().getName();
JOptionPane.showMessageDialog (null, lastBlue);

It is the same coding as for seesOnlyBlue except remove the ! operator in the if-condition.
public static int getNumNodes (Node par)
{ int count = 0;
for (Position p = par.nodes(); p.hasNext(); p.moveOn())
count++;
return count;

5-34

5.24

5.28

5.29

5.30

5.37

5.38

5.39

5.40

5.41

5.43

5.44

Java Au Naturel by William C. Jones

public static int bidirectional (Node par)
{ for (Position p = par.nodes(); p.hasNext(); p.moveOn())
if (! connected (p.getNext(), par)
return false;
return true;
}
Replace the line beginning with "if" by:
if (! current.equals (par) && ! NodeOp.connected (current, par))
public boolean noLoners()
{ for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
if (! pos.getNext().nodes().hasNext())
return false;
return true;

public boolean atLeastOneNonBIlue()
{ for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
if (! pos.getNext().isBlue())
return true;
return false;
}
Replace the for-statement by the following:
for (Position pos = nodes(); pos.hasNext(); pos.moveOn())
if (pos.getNext().getMark() == 1)
{ foundNodeToCheckOut = true;
process (pos.getNext());

Next after G, H will be checked out, which changes its 1 to 2. Next, the boolean variable

is tested and the do-while repeats. E is checked out, which changes its 1 to 2 and its O to 1.

public boolean isBlue()
{ returnitslD % 2 == 1;

public String getName()

{ return "Darryl";

}

private int itsMark = 0;

public void setMark (int newMark)
{ itsMark = newMark;

}

public int getMark()

{ return itsMark;

}
Node #6 connects to Nodes 7, 8, 9, 10.
Node #42 connects to Nodes 43, 44, 45, 46.
Node #97 connects to Nodes 98, 99, 0, 1.
public void fillSlots()
{ if (seesSlot())
{ putCD();

moveOn();

fillSlots();

backUp();

public boolean seesAllFilled()
{ if (! seesSlot())
return true;
else if (! seesCD())
return false;
moveOn();
boolean valueToReturn = seesAllFilled();
backUp();
return valueToReturn;

5-34

Review-1 Java Au Naturel by William C. Jones Review-1

Review: Overall Java Language So Far

This summary presents a description of all of the language elements seen so far except
forthe String[] args ina main method heading. It even includes some elements
from the next chapter relating to doubl e. Several special notations are used to make
the descriptions compact yet reasonably clear:

A phrase in italics is optional.

Words beginning with a small letter are reserved words (the keywords plus t r ue,

f al se, and nul | '); they must be written exactly as is.

Words beginning with a capital letter and ending in "Name" can be replaced by any
identifier of a class, method, or variable as indicated. An identifier is a name that the
writer of the definition makes up. It can be made up of letters, digits, and
underscores. It cannot start with a digit and it cannot be a reserved word.

Other words beginning with a capital letter represent phrases defined elsewhere in
this section to be any of several different things.

A CompilationFile is a file you may compile in Java, structured as shown below. If it has
the optional ext ends phrase, then every public declaration in the superclass named is
indirectly in the defined class by inheritance, except for constructors and those
declarations that the subclass overrides by giving a new declaration with the same
signature (i.e., the same name and the same parameter structure).

I mportDirectives
public class C assNanme extends Supercl assNane
{ DeclarationG oup

}

You may have import directives in a compilable file, as long as they come before any
class definition in the file. The ImportDirectives consist of one or more lines structured
as shown below. The first allows the use of the named class from another package. The
second allows the use of any class from that other package. The PackageName is
several identifiers separated by dots, e.g., j avax. swi ng and j ava. awt . event .

i nport PackageNanme . C assNane ;
i nport PackageName . * ;

A DeclarationGroup is any humber of consecutive Declarations. A Declaration can be
one of the five forms listed below (lines beginning with a left brace are a continuation of
the preceding line). The first two are field variable declarations; the last three are method
declarations. If the assignment to the variable is not present, the variable is initialized to
zero, nul |, or f al se (whichever is appropriate). Methods defined in the same class can
have the same MethodName if they have different signatures. For the constructor
declaration (listed last), the ClassName has to be that of the class the constructor is in.
You may omit super (...); which will then defaultto super () ;

Modi fi erPhrase Type Vari abl eNane ;

Modi fi erPhrase Type Variabl eName = Expression ;

Modi fi er Phrase Type MethodNane (ParanmeterlList)
{ Statement G oup }

Modi fi erPhrase void MethodNane (ParanmeterlList)
{ Statement G oup }

public O assNane (ParameterlList)
{ super (ArgunentList) ; StatementG oup }

Review-2 Java Au Naturel by William C. Jones Review-2

Examples An object of the following class represents a TV show that has a ranking on a
scale of 1to 10. The top line is an import directive whose PackageName is java.util (a
package containing Random). The TVShow class has two declarations of VariableNames
with assignments and two without. These variable declarations have three different
ModifierPhrases: "public static final", "private static final", and "private". The Type is intin
two cases; it is Random and String in the other cases. The TVShow class also has a
declaration of a constructor with the ParameterList "String name, int rank™ and two

declarations of non-constructor methods.

i mport java.util.Random

public class TVShow extends Obj ect

{

public static final int MAX RANK = 10; // two class variables
private static final Random randy = new Random();
[IEEEEEEEEEE i rrrrrry
private String itsNane; /! two instance vari abl es
private int itsRank;
/[** Create an object for the given nane and rank. */
public TVShow (String nanme, int rank) /1 constructor
{ super();

i tsName = nane;

if (rank >= 1 && rank <= MAX_ RANK)

i tsRank = rank;
el se
itsRank = 1;
|
/** Return a new TVShow object with the given name but a
* randomy chosen value for its rank. */
public static TVShow randonthow (String name) // class method
{ return new TVShow (nane, 1 + randy.nextlnt (MAX RANK));
|
/** Return the rank for this particular TVShow object. */
public int getRank() /1 instance met hod
{ return itsRank;
|
}

A ModifierPhrase can have one of the following four forms. The modifier publ i ¢ says
any other class can access the name; pri vat e says only definitions within the current
class can access the name; f i nal says it cannot be changed later (overridden or
reassigned); and st at i ¢ says access can be with the class name in place of an
instance of the class (thus it is a class method or a class variable). A non-constructor
declaration without the st at i ¢ modifier is an instance method or instance variable.

public static final
private static final
public final
private final

Review-3 Java Au Naturel by William C. Jones Review-3

The only Type discussed through the first part of Chapter Six is one of the following. The
boolean type is for values that are either t r ue or f al se. The int type is for numbers
without decimal points. The double type is for numbers that have a decimal point and
digits after it. The ClassName is an object type.

bool ean
i nt
doubl e

PackageNane. C assNane

An ArgumentList, used in method calls, consists of one or more Expressions with
commas between two consecutive expressions. So it has one of the following two forms.

Expr essi on
Expressi on , ArgunentlLi st

Examples The following are statements containing method calls with 2, 1, and O
arguments, respectively.

TVShow t 1 new TVShow ("Law & Order", 9);
TVShow t 2 TVShow. r andonShow (" NYPD Bl ue");
Systemout.println (t2.getRank());

A ParameterList, used in method headings, describes the kinds of arguments that must
be passed as input to the execution of the method. It has one of the following two forms.

Type Vari abl eNane
Type Vari abl eNane , ParaneterLi st

Examples The following method headings in the TVShow class have 2, 1, and 0
parameters, respectively.

public TVShow (String name, int rank)
public static TVShow randonthow (String name)
public int getRank()

A StatementGroup is any number of consecutive Statements. A Statement can be any
of the following nine forms. If an el se could be matched with more than one i f, then
the el se is to be matched with the most recent such i f. The parentheses shown after
i f,while,andfor are not optional.

Type Vari abl eName ;

Met hodCal | ;

Initializer ;

return Expression ;

{ StatenmentGoup }

if (Condition) Statenent

if (Condition) Statenent else Statenent

while (Condition) Statenent

do Statenent while (Condition) ;

for (Initializer ; Condition ; Updater) Statenent

Review-4 Java Au Naturel by William C. Jones Review-4

An Initializer is something that can be used in the first part of a for-statement, to assign a
value to the loop control variable at the beginning of the looping process. It can have any
of the following four forms.

Type Vari abl eRef erence = Expression
Vari abl eRef erence = Expression

Vari abl eRef erence ++

Vari abl eRef erence --

An Updater is something that changes the value of the loop control variable, as follows.

Met hodCal |

Vari abl eRef erence = Expression
Vari abl eRef erence ++

Vari abl eRef erence --

Examples The following are possible for-statement headings.

for (int k =5; k < size; k++)
for (k--; k >0; k--)

for (itsMn =nn; itsMn <0; itsMn =itsMn + 60)
for (p = nodes; p.hasNext(); p.nmoveOn())

An Expression is a phrase for which the runtime system can compute a value. It has
one of the following three forms.

hj ect Expressi on
Nuner i cExpressi on
Condi tion

An ObjectExpression has one of the following forms. The t hi s reference is only
allowed within an instance method or constructor. The VariableReference must be an
object type and the MethodCall must return an object type.

this

nul |

Var i abl eRef er ence

Met hodCal |

StringVal ue

new Cl assNanme (ArgunentlLlist)

A VariableReference has one of the following forms. Option: You may omit this. or
Gl assNane. at the beginning of a VariableReference, to have it default to the executor
of the current instance method or to the class the VariableReference is in, respectively.

Vari abl eNane

PackageNanme. C assNane . Vari abl eNane
this . super . Variabl eNanme

hj ect Expressi on . Vari abl eNane

Examples The following statements assign various kinds of ObjectExpressions to
variables.

TVShow a = nul | ; /'l a refers to no object
hject b = System out; /1 assign a Variabl eRef erence
String ¢ = samgetPosition(); /1 assign a MethodCal |

String u = "Friends"”; /1 assign a StringVal ue
TVShow x = new TVShow ("24", 8); // assign a new val ue

Review-5 Review-5

Java Au Naturel by William C. Jones

A MethodCall has one of the following forms. Option: You may omit thi s. or
Gl assNane. at the beginning of a MethodCall, to have it default to the executor of the
current instance method or to the class the MethodCall is in, respectively.

PackageNane.
this . super
hj ect Expressi on .

G assNane . MethodNane (ArgunentList)
Met hodName (Argunent Li st)
Met hodName (Argunent Li st)

A NumericExpression has one of the following forms. The MethodCall must return an int
or double type and the VariableReference must be an int or double type. The last form
simply means that, if you already have a NumericExpression, you can put parentheses
around it and it will still be a NumericExpression.

I ntegerlLiteral
Doubl eLi t er al

Vari abl eRef er ence
Met hodCal |

Nuner i cExpressi on
Nuner i cExpressi on
Nuner i cExpressi on
Nuner i cExpressi on

* Nuneri cExpressi on
/" Numeri cExpression
% Nuner i cExpr essi on
+ Nuneri cExpression

Nuner i cExpressi on Nuner i cExpressi on
(Nureri cExpression)

A Condition is a kind of Expression. It has one of the following forms. The MethodCall
must return a boolean type and the VariableReference must be a boolean type.

true

fal se

Vari abl eRef er ence

Met hodCal |

Conpari sonO TwoVal ues

I Condition

Condi tion && Condition
Condition || Condition

(Condition)

Examples The following assign various NumericExpressions and Conditions to variables.

int e = 47; /1 assign an IntegerlLiteral

int f = e; /1 assign a Variabl eRef erence

int k = x.getRank(); /1 assign a MethodCal |

int m=f * (e - 5); /1 assign result of operator

bool ean p = true; /1 assign a boolean literal

bool ean q = s.equals (t); // assign a MethodCall

boolean r = e <= f; /1 assign a Conpari sonO TwoVal ues
bool ean ok = p && ! q; /1 assign result of operator

A ComparisonOfTwoValues is a special kind of Condition. It has one of the following
eight forms.

Nuneri cExpressi on < Nuneri cExpression

Nuner i cExpressi on <= Nuneri cExpression
Nurer i cExpression > Nuneri cExpression
Nurer i cExpressi on >= Nuneri cExpression

Nuner i cExpressi on

Nuner i cExpressi on !

hj ect Expressi on
hj ect Expressi on

Nuner i cExpressi on
Nuner i cExpressi on
hj ect Expr essi on
I = (bj ect Expression

Review-6 Java Au Naturel by William C. Jones Review-6

A StringValue has one of the following foms. The only operator that can be used with
object references is the plus sign, where at least one of the operands is a String value. It
concatenates the two String values. If the other operand is a numeric value, the plus sign
concatenates the string of characters that form the numeral with the string of characters
in the String value.

StringLiteral

Vari abl eRef erence

Met hodCal |

StringVal ue + StringVal ue
StringVal ue + Numeri cExpression
Nuneri cExpression + StringVal ue

A StringLiteral is a pair of quotes containing any characters other than a backslash or a
guote, except you use one of the \n or \\ or \b or \t combinations.

An IntegerLiteral is a sequence of one or more digits, optionally preceded by a negative
sign.

A DoubleLiteral is a sequence of one or more digits, then a decimal point, then a
sequence of one or more digits. The whole is optionally preceded by a negative sign.

The twenty reserved words seen so far in this book are the following (t r ue, f al se, and
nul | are technically not keywords). Those in the first line can only be used outside of a
method body, and those in the last line can only be used inside a method body.

private public class extends static void
int boolean new true false null
if else while do for return this super

The twelve Sun standard library methods seen so far in this book are the following.

hj ect : equal s (some(bj ect).
String: equal s (someString),
l engt h(),
substring (start, end).
Random new Random(),
nextint (limtlnt).
System Systemexit (0),
Systemout.println (soneString).
I nt eger: I nt eger. parselnt (sonmeString).

JOpti onPane: JOptionPane. showvessageDi al og (null, soneString),
JOpt i onPane. show nput Di al og (pronpt Stri ng),
JOpt i onPane. showConfirnDi al og (null, someString).

Examples The main method of the following class can be executed from the command
line using j ava Puzzl er. ltillustrates the use of some of these library methods.

public class Puzzler
{
public static void main (String[] args)
{ String s = JOptionPane. show nput Di al og (" How many?");
i nt nunber = Integer.parselnt (s);
for (int k =0; k <s.length(); k++)
Systemout.println (s.substring (0, k));
JOpt i onPane. showMessageDi al og (null, "all done");
Systemexit (0);
} | | =======================

6-1 Java Au Naturel by William C. Jones 6-1

6 Basic Data Types and Expressions

Overview

In this chapter you will learn about decimal number values, character values, long values,
and more String methods, to help develop software for managing a car repair shop. You
will also have a light introduction to graphical components. The first five sections
complete the coverage of all the language features you need for the first half or so of
each of Chapters Eight through Twelve. In particular, if you want to use disk files for
input and output, you can read and understand the first three sections of Chapter Ten
and of Chapter Twelve on disk files after you complete Section 6.5.

Sections 6.1-6.2 discuss the double type of value (numbers with decimal points).
Sections 6.3-6.4 introduce more String methods using chars (character values).
Sections 6.5-6.6 give some details on conversions and casts between types of
values, as well as an introduction to the Math class and JTextArea objects.
Sections 6.7-6.8 complete the development of the RepairShop software, with the
main application class depending on six other classes: Queue, 10, RepairOrder,
View, String, and System (only the last two are from the Sun standard library).

6.1 Double Values, Variables, And Expressions

Suppose you have a job developing a program to help a car repair shop schedule each
day's repair jobs. The shop accepts appointments and walk-ins on a first-come-first-
served basis. The shop foreman enters each repair job into the computer as it is booked,
putting it at the end of a list of such jobs. When a time slot becomes available to work on
a car, the next job at the front of the list is removed from the list and worked on. Walk-ins
during the day are added to the end of the list. This kind of list is called a queue.

Your RepairShop program is to report on the total number of jobs waiting and the total
estimated time to complete those jobs. An updated report is to be made after each
change in the list. So this software will deal with several different kinds of objects,
including:

1. Avirtual repair job, representing a single work order.

2. Avirtual input device, representing the keyboard.

3. Avirtual output device, representing the screen.

4. A virtual queue, storing data for several repair jobs on a first-in-first-out basis.

You will need to store the number of hours for a single work order as a decimal number,
e.g., 1.25 hours for 1 hour 15 minutes. And you will need to read in a line of input
containing several words and separate out each word from the rest. So you need more
information on working with decimal numbers and Strings. This will be supplied in the
next few sections, then we will come back to the RepairShop software and complete it.

Decimal Numbers

You may declare a variable as type double. It can then hold decimal numbers such as
53.172 and -0.00005. Java sets aside a 64-bit storage space for its value, stored in
scientific notation. That is enough space for 15-decimal-place precision, with some
space left over to store an exponent of 10 up to about the 307th power. In short, you can
store a 306-digit number with 15-digit precision. The five numeric operators for doubles
are + for plus, * fortimes, - for minus, / for divided-by, and % for the remainder.

6-2 Java Au Naturel by William C. Jones 6-2

For example, 13.0 / 4.0 is 3.25, the result of "long division”. 8.0 % 2.5 is 0.5
and (-8.0) % 2.5 is-0.5, similar to int values.

The six comparison operators can be used for both int values and double values: The
expression X < y means that x is less than y. Similarly, x > y means that x is
greater thany, X <= y means that x is less than or equal to y, and x >= y means
that x is greater than orequaltoy. x !'=y meansthatxisnotequaltoyand x ==y
means that x is equal to y (the double equals sign is needed to distinguish it from the
assignment operator).

If you want to obtain a double value from the user, you can convert the string of
characters s that showl nput Di al og returns to a double value with the following
statement. It uses the par seDoubl e class method from the Double class in the

j ava. | ang package, which is analogous to | nt eger. par sel nt. This class method
accepts either normal decimal form (e.g., -4176000.0 or 0.000000275) or scientific
notation (their equivalents -4.176E+6 or 2.75E-7). Note that the 'E' in this form stands
for "times ten to the power": 6.3E+4 is 6.3 times ten to the power 4, i.e., 63000.

doubl e x = Doubl e. par seDoubl e (s);

The program can crash if the user's input contains letters or is otherwise ill-formed.
However, the Doubl e. par seDoubl e method (which is new with Java version 1.2) will
tolerate blanks before the numeral, whereas | nt eger . par sel nt will not.

Promotions and casts

If you combine an int value with a double value using an operator, the runtime system
automatically promotes the whole number to the corresponding decimal form. The same
thing happens if you assign an int value to a double variable. So if you have two int
variables x and y,then (1.0 * x) / Yy gives a precise answer for the quotient.

You cannot assign a double value to an int variable without saying that you are doing it.
You do this with a cast, which is the type name in parentheses. For instance, if dub is a
double variable and ent is an int variable, then dub = ent islegal, but ent = dub
is not legal. However, ent = (int) dub islegal. This assignment discards the part
after the decimal point in dub’s value (3.8 is changed to 3, and -3.8 is changed to -3). In
general, you are allowed to make a cast from any numeric value to any other kind of
numeric value, but you may lose some of the value.

Sentinel logic

A standard pattern for user interaction is to ask for a particular kind of value over and
over again, using that value in a new calculation. When the user wants to stop the
program, the user enters a special signal value such as 0 or -1 that cannot occur as a
value to use in the calculation. Such a signal is called a sentinel value.

The GrowthRates application program in Listing 6.1 illustrates this sentinel-controlled
loop pattern. It asks the user for an interest rate (such as 6% or 15%, but without the
percent sign). Then it calculates how many years it would take for money to grow at that
interest rate to be twice as much and reports the answer. The sentinel values are all the
nonpositive numbers (i.e., an "interest rate" that is not positive terminates the program).

The computation of the number of years it takes to double the money is independent of
any object, since it works only with numbers. The MathOp class in the earlier Listing 5.1
is intended to collect together class methods that work with numbers. So this
computation of the doubling time should be a method in the MathOp utilities class.

6-3 Java Au Naturel by William C. Jones 6-3

Listing 6.1 Application program using doubles

i mport javax.sw ng. JOpti onPane;
public class G ow hRat es
/[** Calculate tine to double your nbney at a given rate. */

public static void main (String[] args)
{ JOptionPane. showvessageDi al og (null,
"Cal culating grom h for various interest rates");
String i nput = JOpti onPane. show nput Di al og
("Annual rate? O if done:");
doubl e rate = Doubl e. par seDoubl e (i nput);
while (rate > 0.0)
{ JOptionPane. showvessageDi al og (null,
"It takes " + Mat hQp. yearsToDoubl e (rate)
+ " years for \nyour noney to double.");
i nput = JOpti onPane. showl nput Di al og
("Anot her rate (0 when done):");
rate = Doubl e. par seDoubl e (i nput);

}
Systemexit (0);
|
}
// a nmethod for the MathQp utilities class
/[** Precondition: interestRate is positive. */

public static int yearsToDoubl e (doubl e interestRate)
{ doubl e bal ance = 1.0;
int count = O;
whi | e (bal ance < 2.0)
{ balance = balance * (1.0 + interestRate / 100.0);
count ++;
}

return count;
1y

The calculation requires repeatedly multiplying one year's balance by 1.06 if the r at e is
6%, by 1.15if the r at e is 15%, etc. The command count ++ means that count is
increased by 1. This logic illustrates the common count-cases looping action: If you
initialize a counter variable to zero before the loop begins, and you increment it each time
through the loop, then its value when you exit the loop will be the number of times that
the body of the loop was executed.

The following is the sequence of phrases you will see on the screen when you run this
program and enter the boldfaced values:

Calculating growth for various interest rates
Annual rate? O if done: 6

It takes 12 years for your noney to double.
Anot her rate (0 when done): 9.1

It takes 8 years for your noney to doubl e.
Anot her rate (0 when done): 12.3

It takes 6 years for your noney to doubl e.
Anot her rate (0 when done): -2

6-4 Java Au Naturel by William C. Jones 6-4

=3 Input i Message
Annual rate? 0 if done: Ci It takes 12 years for
= |E | — your money to double.
OK Cancel OK

Figure 6.1 SCREEN SHOTS of dialog boxes for GrowthRates

keyboard and screen, it is good style to begin with a line or two on the screen
indicating the purpose of the program. That way, the user knows right away if
he/she is running the desired program. The first statement of Listing 6.1
illustrates this principle.

E’? Programming Style When you have a program that interacts with the user by

Special assignment operators
The assignment to the bal ance variable in Listing 6.1 can be written as follows:
balance *= 1.0 + interestRate / 100. 0;

This is an example of a special assignment operator. You can write X *= y instead
of x = x * y. The former executes somewhat faster and seems a little easier to
understand once you get used to it. Similarly, X += y means x = x +y, X -= Yy
means Xx = X - Yy, X /=y means X = x / y,andx % y means x = X %Vy.
For instance, the following two statements have exactly the same effect:

total = total + sonmeQuy.