7
 Java Au Naturel by William C. Jones 7

Buttons and Textfields

Dr. William C. Jones, Jr. www.javabook.org

The Sun standard library gives Java programmers all the basic building blocks for making GUIs (Graphical User Interfaces). You use the Sun library classes to define more complex objects that work well for a particular purpose. This material describes a set of such definitions, suitable for the most common kinds of GUI. They are named EFrame, EButton, EField, ELabel, ETextArea, and ETimer (the "E" stands for "Easy").

If you are not familiar with the building blocks used here, all the better! These E-objects are easier to understand and use than the building blocks they are made of. And studying these will take you most of the way towards understanding the building blocks themselves (JButton, ActionListener, etc.). The last page of this material will give you a major start on the transition from E-objects to the more flexible Sun objects.

Our first example is a program that asks two simple questions. The user is to answer the first question yes or no by clicking on one of two buttons. Then the user is to answer the second question by typing in the space provided. The program's response will appear in the button or space where the user clicks or types. The frame is to look as follows when it first comes up for the user to see, except the user would see the rest of the photo.

[image: image1.png]
You start solving a programming problem by drawing pictures of how things look; we already have that above. The next thing to do is to make a design for the solution. The first step of the solution is obviously to create a window or frame that will appear on the screen. If you run the program from BlueJ, just create a new MathQuiz object in the usual way to see the frame containing the two questions. If you run it from the command window, use java MathQuizApp with the following application class.

class MathQuizApp // to create a frame from the command window

{

public static void main (String[] args)

{
new MathQuiz();

}
//======================

}

The accompanying block contains a reasonable design for the program, once the frame is created. See how easily it follows from the picture. And once you have a design for a program, the Java coding follows easily almost line-for-line. Note: A textfield is a rectangular area where the user can type input.

STRUCTURED NATURAL LANGUAGE DESIGN for MathQuiz construction

1. Add to the frame the question "Is 121 a perfect square?"

2. Add to the frame a button that says "yes" on it.

3. Add to the frame a button that says "no" on it.

4. Add to the frame the question "What is the square of 30?"

5. Add to the frame a textfield where the user can type the answer to the question.

6. Add to the frame a picture the user can contemplate while thinking out the answers.

7. Suspend action until the user clicks a button or types in the textfield.
An EFrame is a rectangular window that appears on the screen. A subclass of EFrame must have a constructor that adds components (buttons, textfields, pictures, etc.) as desired. Always finish by saying setVisible(true); this final command is what makes the frame appear on the screen. If you study the complete MathQuiz class at the bottom of this page, you can see that the lines numbered 1-6 in the constructor match up precisely with the first six steps of the design. Line 7 is added because the language requires it.

The key method for EFrames is add(someComponent); it is used in this constructor:

· Line 1 adds a label (i.e., a place on the screen) that contains the question "Is 121 a perfect square?".

· Lines 2 and 3 add to the frame two buttons that contain the text "yes" and "no".

· Line 4 adds another label that asks, "What is the square of 30?".

· Line 5 adds a textfield where the user will type the answer; this AnswerField object is wide enough to hold at least 8 characters.

· Line 6 adds a label showing a picture of Rome.

Listing 1 The MathQuiz class

public class MathQuiz extends EFrame

{

 /** The View: Lay out the GUI components. */

public MathQuiz()

{
add (new ELabel().text ("Is 121 a perfect square?")); // 1

add (new YesRightButton().text ("yes")); // 2

add (new NoWrongButton().text ("no")); // 3

add (new ELabel().text ("What is the square of 30?")); // 4

add (new AnswerField().width (8)); //in characters // 5

add (new ELabel().picture ("Rome.jpg")); // 6

setVisible (true); // 7

}
//======================

 /** Controllers: React to click of button or ENTER key. */

private class YesRightButton extends EButton

{
public void onClick()

{
this.setText ("right!"); // 8

}

}
//======================

private class NoWrongButton extends EButton

{
public void onClick()

{
this.setText ("you're wrong."); // 9

}

}
//======================

private class AnswerField extends EField

{
public void onEnter()

{
if (this.getText().equals ("900")) //10

this.setText ("good!"); //11

else //12

this.setText ("you're wrong."); //13

}

}
//======================

}

Basic E-object Components

YesRightButton and NoWrongButton are subclasses of EButton, and AnswerField is a subclass of EField. All of ELabel, EButton, and EField have the following three instance methods; the first two are inherited from Sun's JLabel, JButton, and JTextField.

(a) setText(someString) changes the phrase written on the object to what is specified in the parentheses.

(b) getText() returns the phrase currently written on the object.

(c) text(someString) is the same as setText except that it also returns the object itself, so you can use that return value within thisEFrame.add(someComponent).
The runtime system places all GUI (Graphical User Interface) components, such as labels, buttons, and textfields, inside the frame in the order they are added. They are added left to right until one row is full, then added left to right in the next row, etc. Each row is centered. If you want more control on layout, you have to use the Sun library.

You create an ELabel object using new ELabel(). You can place a picture at that spot on the screen using the ELabel instance method picture(fileString). It returns the ELabel object itself, so it can be used within thisEFrame.add(someComponent).

A subclass of EButton is generally defined inside the EFrame subclass. It needs nothing more than one method: onClick() will execute when the user clicks the button. The YesRightButton class is a subclass of EButton. It is defined here to display on itself the answer "right!" (line 8) when the user clicks it to answer the question "Is 121 a perfect square?". A NoWrongButton (also a subclass of EButton) is defined to display on itself the answer "you're wrong." (line 9) when the user clicks it. If the question were "Is 111 a perfect square?", you would need to change these button definitions.

A subclass of EField is generally defined inside the EFrame subclass. It needs nothing more than one method: onEnter() (above line 10) will execute when the user presses the ENTER key within the textfield. An AnswerField object is defined here to react to the ENTER key by first looking at the text the user has typed; line 10 does the looking. If the user typed "900", this textfield displays the answer "good!" (line 11), otherwise it displays the answer "you're wrong." (line 13). You can set the width of an EField, measured in characters, with the instance method width(numCharacters); it returns the EField object itself. Note that onEnter() and onClick() are not called by coding anywhere in the program; they are called by the user's action of keying or clicking.
You may be puzzled by the fact that the event-handling classes for buttons and textfields are placed inside the overall frame class. For this MathQuiz class, they could just as well be placed outside the class (if you change "private class" to "class"). But in most situations, these event-handling classes need to be able to access private data fields of the frame; you will see this in the BankAccount program discussed next. In such a case, the event-handling classes must be placed inside the frame class, to allow that access. That makes them inner classes. And since they are not of concern to outside classes, they should be declared as private members of the overall EFrame subclass.

You can try out this complete MathQuiz program by downloading the zipped folder that comes with this material. It contains both source code and compiled forms. Then enter java MathQuizApp in the command window.

Exercise 1 Change MathQuiz so that it offers 3 buttons, Yes, No, and Maybe, instead of the two offered. Have the program respond to Maybe with "Make up your mind."

Exercise 2 Change MathQuiz so that the NoWrongButton changes back to "no" when clicked again.
Exercise 3* Add a third question to MathQuiz, with its own yes and no buttons, where the correct answer is "yes". Then add a fourth, where the correct answer is "no".

Additional E-object Capabilities

The BankView class in Listing 2 below has two variables, modelAccount and itsOutput, that contain objects that have to be accessed in several methods of the class. This means you have to define them outside of all methods, as shown in lines 1 and 2. The modelAccount object keeps track of checks and deposits for a bank account. The itsOutput object keeps track of a large area where information written by the program is to appear. We add it to the frame in line 7, and we access it in lines 9 and 14.

An ETextArea object displays a large amount of textual information. The ETextArea constructor in line 2 creates a rectangular area (a textarea) suitable for writing up to 10 rows of words, each row having room for at least 42 characters. You will also have scroll bars on this area, so the user can scroll up-and-down or left-and-right to read all the material printed there. You add one line to the information displayed in an ETextArea by using et.say(messageString).

Listing 2 The BankView class (uses the BankAccount class)

public class BankView extends EFrame

{

private BankAccount modelAccount = new BankAccount(); // 1

private ETextArea itsOutput = new ETextArea (10, 42); // 2

 /** The View: Lay out the GUI components. */

public BankView()

{
add (new LastFiveButton().text // 3

("show last five transactions")); // 4

add (new ELabel().text ("Enter deposit(+) or check(-)"));

add (new UpdateField().width (5).text ("0")); // 6

add (itsOutput); // 7

setVisible (true); // 8

}
//======================

 /** Controllers: React to click of button or ENTER key. */

private class LastFiveButton extends EButton

{
public void onClick()

{
itsOutput.say (modelAccount.lastFiveTransactions());// 9

}

}
//======================

private class UpdateField extends EField

{
public void onEnter()

{
String input = this.getText(); //10

if (input == null || input.length() == 0) //11

return; //12

modelAccount.makeChange (input); //13

itsOutput.say (modelAccount.currentBalance() + //14

" = balance."); //15

}

}
//======================

}

In line 6 of this class, we construct a new UpdateField (a subclass of EField), then set its width to be 5 characters. Since the width method returns the EField object itself, you can apply the text method to it, setting its text to be one zero. Since the text method also returns the EField object itself, you can use it as the parameter for the add method.

The top portion of the BankView frame looks as shown in the accompanying figure after inputs of 100, -30, and 42, except that the bottom part of the output area has been cut off. Scroll bars will appear when the textarea has too much material to display at one time.

[image: image2.png]
Calling the BankView constructor lays out a button and a textfield for input and a textarea for output (lines 3-7), then makes these components visible (line 8). Then the runtime system pauses until some event takes place: When the button is clicked, a record of the last five transactions in the bank account appears in the textarea (line 9; see the figure above). When the user enters a new transaction in the textfield (line 10), it is checked to make sure it has at least one character (lines 11-12). If so, the bank account is updated (line 13) and then the current balance is printed in the textarea (lines 14-15).

This program follows the standard MVC (model-view-controller) design: (a) The constructor creates the view (what the user sees on the screen and interacts with) and then suspends the action of the program until some input event occurs. (b) The last two methods are the controllers of what goes on in the program, reacting to events. (c) The BankAccount object stores information that is accessed at several points in the execution of the program. It is a model of a part of the real world (a bank account in this case); the controllers act as intermediaries between the model and the view. The BankAccount class has methods that have nothing to do with GUIs, so we do not discuss it here; it is in the zipped folder. java BankViewApp creates the BankView object.
ETimers

A subclass of ETimer is generally defined inside the EFrame subclass. It must have an onBeep() instance method. You use the instance method delay(m), which returns the ETimer itself, to tell the timer to wait for a period of m milliseconds (1000 milliseconds is 1 second) before executing its onBeep method. ETimer is a subclass of ELabel, because an ETimer is often used to display a picture that changes frequently, once each time onBeep is called. You can stop the beeping with the ETimer instance method stop().

Example: add (new RomeTimer().delay (1200).picture ("Rome.jpg")) will display a picture of Rome for just 1.2 seconds, then replace the picture of Rome by a picture of Ireland, if you have defined the following class.

private class RomeTimer extends ETimer

{
public void onBeep()

{
this.picture ("Ireland.jpg");

}

}

The DiceGame class

Listing 3 on the following page displays two dice and two buttons. When the user clicks the first button, the dice start rolling fairly fast. When the user clicks the second button, the dice stop rolling. This program requires that you have six pictures named "1die.jpg", "2die.jpg", ..., "6die.jpg", showing the six possible die faces, in the same folder with the program that is using them. It uses a random number generator: randy.nextInt() is one of 0, 1, 2, 3, 4, 5. The accompanying figure shows how the frame could look after several clicks. Initially, though, both dice show a 1-spot.

[image: image3.png]
The EFrame you get with the no-parameter constructor new EFrame() (a) has a blank title on it, (b) has a width of 700 pixels, (c) has a height of 600 pixels, and (d) will terminate the program when the window is closed (i.e., revert to the command window if that is where you started it from). You may want to override these values.

The EFrame constructor new EFrame(titleString, widthInt, heightInt, isMainBoolean) lets you change these four values. If the fourth parameter is false, then closing the window will not terminate the program. This is appropriate when you use one window to open other windows -- You do not want all windows to disappear just because you closed one of the subordinate windows (which you can do with someFrame.dispose()). Only the main window should be created with the fourth parameter being true.

The DiceGame class calls this EFrame constructor with the super statement (line 4). As the figure above shows, the frame is quite wide (530 pixels) but short (130 pixels), and it has the title "Dice Game" at the top of the window.

If you wanted to have this frame appear while the user is working on the BankView frame, you would add a button to BankView whose onClick method says simply new DiceGame(). So clicking that button would make the dice game frame appear. But you would also have to change "true" to "false" in line 4 of the DiceGame class, so that closing the DiceGame frame would not lose the BankView frame as well.

What makes the dice roll fast? Lines 11 and 13 put a random die number on the labels and then set their timers on delays of 0.15 and 0.09 seconds, respectively. Thereafter, every 0.12 seconds, each die's timer beeps, which executes the coding in the onBeep method. Why those numbers? Because experimentation showed they work well.

Warning: If you use delay() plus either picture() or text() in one expression, use delay() first, as in new ETimer().delay(m).picture("me.bmp"). The reason is that picture() returns an ELabel value, and an ELabel cannot take a delay() action.

The ELabel method getPicture() returns the name String of the current picture. The onBeep coding (lines 14-16) gets the first character char(0) of the picture's name (which will be '1', '2', '3', '4', '5', or '6') and subtracts the Unicode value for '0' from its Unicode value, which will produce one of the numbers 1, 2, 3, 4, 5, or 6. (One difference is that a character can be part of a string but a number cannot; a number can be doubled but a character cannot). The coding calculates the next number (line 15; the next after 6 is 1). It then displays that picture and sets the delay for the next beeping to 0.12 seconds.

Listing 3 The DiceGame class

public class DiceGame extends EFrame

{

private java.util.Random randy = new java.util.Random(); // 1

private ETimer one = new RollTimer(); // 2

private ETimer two = new RollTimer(); // 3

 /** The View: Lay out the GUI components. */

public DiceGame()

{
super ("Dice Game", 530, 130, true); // 4

add (new GoButton().text ("Click to roll the 2 dice"));// 5

add (one.picture ("1die.jpg")); // 6

add (two.picture ("1die.jpg")); // 7

add (new StopButton().text ("Click to stop")); // 8

setVisible (true); // 9

}
//======================

 /** Controllers: React to click of button or ENTER key. */

private class GoButton extends EButton

{
public void onClick()

{
int n = 1 + randy.nextInt (6); //10

one.delay (150).picture (n + "die.jpg"); //11

n = 1 + randy.nextInt (6); //12

two.delay (90).picture (n + "die.jpg"); //13

}

}
//======================

private class RollTimer extends ETimer

{
public void onBeep()

{
int n = this.getPicture().charAt (0) - '0'; //14

n = (n >= 6 ? 1 : 1 + n); //15

this.delay (120).picture (n + "die.jpg"); //16

}

}
//======================

private class StopButton extends EButton

{
public void onClick()

{
one.stop(); //17

two.stop(); //18

}

}
//======================

}

Additional useful methods: When adding components to a frame, you can force the next one to appear at the beginning of the next line if you use this EFrame method: someFrame.startNewRow(). An EButton inherits from Sun's JButton class setToolTipText(messageString) to establish the phrase that will appear when the user has the mouse cursor linger over the button. And if you want to keep several components in the same row of the frame no matter how the frame is resized, then: someFrame.add (new EPanel ("2+2=", new AnswerField().width(8))) adds a label saying "2+2=" and a textfield after it. Or you could have two components, e.g., two EButtons, after the label text. If the first parameter is "", the label is omitted. If you add more components to the EPanel object, they will all stay together during resizing.

Summary of E-object classes

EFrame subclass can use super() or super(titleString, widthInt,heightInt, isMainBoolean);

eo.add (someComponent)
// insert the component in the frame, book-reading order

eo.setVisible (true)

// makes the frame appear on the screen

eo.startNewRow()

// start a new row for components being added

eo.dispose()

// close the frame

new ELabel()

eo.picture (fileString)

// place the picture on the label; return the ELabel itself

eo.getPicture() returns String
// find out which picture is on it ("" if none)

eo.text (titleString)

// place the text on the label; return the ELabel itself

eo.setText (titleString)

// change what the label says on it

eo.getText() returns String
// find out what the label says on it

new ETextArea (heightOfTextAreaInCharacters, widthOfTextAreaInCharacters)

eo.say (stringAppended)
// add this string as the next line in the textarea

EButton subclass can use super(); it must define method onClick() to react to a click

eo.text (titleString)

// place the text on the button; return the EButton itself

eo.setText (titleString)

// change what the button says on it

eo.getText() returns String
// find out what the button says on it

EField subclass can use super(); it must define method onEnter() to react to ENTER key

eo.width (numCharacters)
// make it many characters wide; return the EField itself

eo.text (titleString)

// place the text in the textfield; return the EField itself

eo.setText (titleString)

// change what the textfield says in it

eo.getText() returns String
// find out what the textfield says in it

ETimer subclass can use super(); it must define method onBeep() [subclass of ELabel]

eo.delay (millisecondsInt)
// execute onBeep() after a delay; return the ETimer itself

eo.stop()

// terminate the timer, so onBeep() will not be executed

Exercise 4 Revise BankView so that it says "The last 5 are " before it lists the five.

Exercise 5 Have the DiceGame stop rolling the dice after each has changed 15 times, even if the user has not clicked the button yet.

Exercise 6* If a BankAccount had another instance method, numChecks(), to return the number of checks so far, how would you change Listing 2 so that clicking a button will cause that information to appear in the textarea?

Exercise 7* Revise BankView to have two textfields, one for checks only and one for deposits only. Both will be entered as positive numbers.

Exercise 8* How would DiceGame change if the pictures were named "die1.jpg" etc.?

Exercise 9* Revise DiceGame to roll three dice at a time instead of two.

Exercise 10* The DiceGame has both dice increase the number by 1 each time. How would you have the second die decrease by 1 while the first die increases by 1?

Exercise 11** A paragraph in this section describes how you could have the DiceGame played from the BankView frame. Do what it says and try it out.

Exercise 12** After doing the previous exercise, revise it to make the user stop playing the dice game after 40 seconds. Have a variable ETimer itsStop = new Stopper(), have a click of the button execute itsStop.delay(40000), and have the onBeep() method of the Stopper class execute the dispose method for the DiceGame frame.

Answers to Exercises

1

Insert either before or after line 3: add (new MaybeButton().text ("maybe")); Also add a

new inner class exactly like YesRightButton except (a) replace "YesRightButton" by "MaybeButton"

and (b) replace "right!" by "make up your mind.".

2

Replace the body of the onClick() method in the NoWrongButton class to the following:

if (this.getText().equals ("no"))

this.setText ("you're wrong.");

else

this.setText ("no");

4

Replace line 9 by: itsOutput.say ("The last 5 are " + modelAccount.lastFiveTransactions());

5

Add after line 3: private int counter = 0; In the coding for GoButton's onClick, add counter = 0;

In RollTimer's onBeep, add before line 14 (allowing 15 rolls each): counter++; if (counter > 30) return;

Read this later

When you want more flexibility than the material here gives you, study Sun's javax.swing classes of JFrame, JButton, JTextField, JLabel, etc. The next few paragraphs will help your transition. Study ELabel, EButton, EField, and ETextArea in that order.

A key principle of good software development is that, when you have the same 3 or 4 statements appearing in several places, you should write them once, inside a method, and call the method in each place. Software that adds several pictures to a frame using Sun's JLabels would have the following statements several times ("Rome" would vary):

JLabel lab = new JLabel("");

lab.setIcon (new ImageIcon ("Rome.jpg"));

this.add (lab);

These statements, however, are expressed in a design by a single sentence such as "Add to the frame the picture Rome.jpg". The E-objects library translate this sentence to a single Java statement, this.add (new ELabel().picture ("Rome.jpg"));

You often need to later ask the object the name of the picture it shows, as in DiceGame. So an ELabel has the getPicture method and an instance variable that stores the name. The text method is there only because of the ETimer subclass of ELabel.

Look at EButton. Sometimes it is useful to separate a button's appearance (the text on it, its color, its font) from the event-handling. JButton specifies the button's appearance; you attach another kind of object, an ActionListener, to handle the event of clicking the button. So JButton has someButton.addActionListener (someObject). This means you can have one ActionListener object that handles events for more than one JButton, or one JButton that has more than one ActionListener event-handler.

However, the need for this flexibility is rare. And when you do not need it, maintaining the separation is tedious. So the EButton class provides a single object that has both capabilities -- both a JButton and an ActionListener; it attaches itself (the ActionListener object) to itself (the JButton object). In short, EButton is simpler but less flexible than the classes provided by Sun's standard library. The basic principle of the E-object library is to provide simplicity at the loss of the flexibility that you only occasionally need.

The event-handling objects in javax.swing occasionally (but rarely) find it useful to have additional specific information about the event to be handled, besides the simple fact that a button was clicked. So the method that reacts to the event, called actionPerformed instead of onClick, has an extra parameter. But most of the time one does not need that parameter, and beginners find it an unused parameter mystifying. So EButton ignores that extra information. Note: The word "abstract" has no other effect than to tell the compiler to force the writer of the subclass to write onClick or onEnter or onBeep.

The text method does nothing more than call the setText method inherited from the JButton and JTextField classes and then return the component itself. This allows you to use new GoButton().text(xxx) as the parameter of the add method. Without it, you would have to declare a local variable and write three statements (GoButton b = new GoButton(); b.setText(xxx); add(b)) to initialize the text on the button, or else write a GoButton constructor. Either one would be tedious.

Sometimes you want scroll bars around your textareas and sometimes you do not. javax.swing.JTextArea is the text area object itself; you have to put it inside a JScrollPane object if you want the scroll bars. The JScrollPane is the component you add to the frame. But still, when you print something, you print it to the JTextArea object. The ETextArea class combines these two functions. Again, flexibility is sacrified for convenience and simplicity.

